Publications by authors named "Ashu Choudhary"

Molecular dynamics simulations were employed to investigate the reorientation dynamics of water molecules under supercritical conditions. Our findings indicate that supercritical water consists of a fluctuating assembly of water clusters of varying sizes. The reorientational motions are characterized by large angular displacements and occur on fast time scales.

View Article and Find Full Text PDF

To clarify the origin of the polarization of magnesium deposition/dissolution reactions, we combined electrochemical measurement, soft X-ray absorption spectroscopy ( SXAS), Raman, and density functional theory (DFT) techniques to three different electrolytes: magnesium bis(trifluoromethanesulfonyl)amide (Mg(TFSA))/triglyme, magnesium borohydride (Mg(BH))/tetrahydrofuran (THF), and Mg(TFSA)/2-methyltetrahydrofuran (2-MeTHF). Cyclic voltammetry revealed that magnesium deposition/dissolution reactions occur in Mg(TFSA)/triglyme and Mg(BH)/THF, while the reactions do not occur in Mg(TFSA)/2-MeTHF. Raman spectroscopy shows that the [TFSA] in the Mg(TFSA)/triglyme electrolyte largely does not coordinate to the magnesium ions, while all of the [TFSA] in Mg(TFSA)/2-MeTHF and [BH] in Mg(BH)/THF coordinate to the magnesium ions.

View Article and Find Full Text PDF

Anisotropic structure and dynamics of the hydration shell of a benzene solute in supercritical water are investigated by means of ab initio molecular dynamics simulations. The polarity and structural distortion of the benzene solute in supercritical water are also investigated in this study. Calculations are done at 673 K for three different densities of the solvent.

View Article and Find Full Text PDF

To achieve a sustainable-energy society in the future, next-generation highly efficient energy storage technologies, particularly those based on multivalent metal negative electrodes, are urgently required to be developed. Magnesium rechargeable batteries (MRBs) are promising options owing to the many advantageous chemical and electrochemical properties of magnesium. However, the substantially low working voltage of sulfur-based positive electrodes may hinder MRBs in becoming alternatives to current Li-ion batteries.

View Article and Find Full Text PDF

Water molecules in different parts of the anisotropic hydration shell of an aromatic molecule experience different interactions. In the present study, we investigate the anisotropic dynamics of water molecules in different non-overlapping conical shells around a benzene solute at sub- and supercritical conditions by means of molecular dynamics simulations using both non-polarizable and polarizable models. In addition to the dynamical properties, the effects of polarizability on the hydration structure of benzene at varying thermodynamic conditions are also investigated in the current study.

View Article and Find Full Text PDF

A first-principles molecular dynamics study is presented for the structural, dynamical, vibrational, and dipolar properties of the solvation shell of a nitrate ion in deuterated water. A detailed description of the anisotropic structure of the solvation shell is presented through calculations of various structural distributions in different conical shells around the perpendicular axis of the ion. The nitrate ion-water dimer potential energies are also calculated for many different orientations of water.

View Article and Find Full Text PDF

The anisotropic structure and dynamics of the hydration shell of a benzene solute in liquid water have been investigated by means of ab initio molecular dynamics simulations using the BLYP (Becke-Lee-Yang-Parr) and dispersion corrected BLYP-D functionals. The main focus has been to look at the influence of π-hydrogen-bonding and hydrophobic interactions on the distance and angle resolved various structural and dynamic properties of solvation shell. The structure of hydration shell water molecules around benzene is found to be highly anisotropic as revealed by the radial distribution functions of different conical regions and joint radial/angular distribution functions.

View Article and Find Full Text PDF

The spatial and orientational structure of the solvation shell of benzene in sub- and supercritical water are investigated by means of molecular dynamics simulations. The present study reveals different local organization of water molecules at different parts of the solute. The π-hydrogen-bonding between benzene and water along the axial direction is found to exist even at supercritical conditions although to a reduced extent.

View Article and Find Full Text PDF