Infantile (fetal and neonatal) megakaryocytes (Mks) have a distinct phenotype consisting of hyperproliferation, limited morphogenesis, and low platelet production capacity. These properties contribute to clinical problems that include thrombocytopenia in neonates, delayed platelet engraftment in recipients of cord blood stem cell transplants, and inefficient ex vivo platelet production from pluripotent stem cell-derived Mks. The infantile phenotype results from deficiency of the actin-regulated coactivator, MKL1, which programs cytoskeletal changes driving morphogenesis.
View Article and Find Full Text PDFBicelles are used in many membrane protein studies because they are thought to be more bilayer-like than micelles. We investigated the properties of "isotropic" bicelles by small-angle neutron scattering, small-angle X-ray scattering, fluorescence anisotropy, and molecular dynamics. All data suggest that bicelles with a q value below 1 deviate from the classic bicelle that contains lipids in the core and detergent in the rim.
View Article and Find Full Text PDFFetal megakaryocytes (Mks) differ from adult Mks in key parameters that affect their capacity for platelet production. However, despite being smaller, more proliferative, and less polyploid, fetal Mks generally mature in the same manner as adult Mks. The phenotypic features unique to fetal Mks predispose patients to several disease conditions, including infantile thrombocytopenia, infantile megakaryoblastic leukemias, and poor platelet recovery after umbilical cord blood stem cell transplantations.
View Article and Find Full Text PDFHigh-mobility group A1 (HMGA1) encodes proteins that act as mediators in viral integration, modification of chromatin structure, neoplastic transformation and metastatic progression. Because HMGA1 is overexpressed in most cancers and has transcriptional relationships with several Wnt-responsive genes, we explored the involvement of HMGA1 in Wnt/β-catenin/TCF-4 signalling. In adenomatous polyposis coli (APC(Min/+)) mice, we observed significant up-regulation of HMGA1 mRNA and protein in intestinal tumours when compared with normal intestinal mucosa.
View Article and Find Full Text PDF