Publications by authors named "Ashraya Ravikumar"

Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5,764 MET kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET kinase domain.

View Article and Find Full Text PDF

In their folded state, biomolecules exchange between multiple conformational states that are crucial for their function. Traditional structural biology methods, such as X-ray crystallography and cryogenic electron microscopy (cryo-EM), produce density maps that are ensemble averages, reflecting molecules in various conformations. Yet, most models derived from these maps explicitly represent only a single conformation, overlooking the complexity of biomolecular structures.

View Article and Find Full Text PDF

In their folded state, biomolecules exchange between multiple conformational states that are crucial for their function. Traditional structural biology methods, such as X-ray crystallography and cryogenic electron microscopy (cryo-EM), produce density maps that are ensemble averages, reflecting molecules in various conformations. Yet, most models derived from these maps explicitly represent only a single conformation, overlooking the complexity of biomolecular structures.

View Article and Find Full Text PDF

An evaluation of systematic differences in local structure and conformation in the interior of protein tertiary structures determined by crystallography and by cryo-electron microscopy (cryo-EM) is reported. The expectation is that any consistent differences between the derived atomic models could provide insights into variations in side-chain packing that result from differences in specimens prepared for analysis between these two methods. By computing an atomic packing score, which provides a quantitative measure of clustering of side-chain atoms in the core of the tertiary structures, it is found that, in general, for structures determined by cryo-EM, side chains are more dispersed than in structures determined by X-ray crystallography over a similar resolution range.

View Article and Find Full Text PDF

Proteins undergo motions in a range of amplitudes, from domain motions to backbone rotations, leading to changes in (φ,ψ) torsion angles and small-scale bond vibrations and angle bending. Here, we study the extent of variations in (φ,ψ) values in proteins and the effects of bond geometry variations due to vibrational motions in a protein on the accessible, (steric clash-free) (φ,ψ) space. We perform 1-fs timestep unconstrained molecular dynamics simulations on super-high-resolution protein structures.

View Article and Find Full Text PDF

Studies on energy associated with free dipeptides have shown that conformers with unfavorable (ϕ,ψ) torsion angles have higher energy compared to conformers with favorable (ϕ,ψ) angles. It is expected that higher energy confers higher dynamics and flexibility to that part of the protein. Here, we explore a potential relationship between conformational strain in a residue due to unfavorable (ϕ,ψ) angles and its flexibility and dynamics in the context of protein structures.

View Article and Find Full Text PDF

Ramachandran validation of protein structures is commonly performed using developments, such as MolProbity. We suggest tailoring such analyses by position-wise, geometry-specific steric-maps, which show (φ,ψ) regions with steric-clash at every residue position. These maps are different from the classical steric-map because they are highly sensitive to bond length and angle values that are used, in our steric-maps, as observed in the residue positions in super-high-resolution peptide and protein structures.

View Article and Find Full Text PDF

Reverse turns are solvent-exposed motifs in proteins that are crucial in nucleating β-sheets and drive the protein folding. The solvent-exposed nature makes reverse turns more amenable to chemical modifications than α-helices or β-sheets towards modulating the stability of re-engineered proteins. Here, we utilize van der Waals repulsive forces in tuning the steric restraint at the reverse turn.

View Article and Find Full Text PDF