Recent transmission electron microscopy images of transverse sections of human cortical bone showed that mineral lamellae (polycrystalline sheets of apatite crystals) form arcuate multi-radius patterns around collagen fibrils. The 3-6 nm thick mineral lamellae are arranged in stacks of 3-20 layers and curve around individual fibrils, few fibrils, and higher numbers of collagen fibrils. We evaluate the effect of these stacked mineral lamellae with various radius of curvature patterns on the elastic bending and torsional responses of bone at the sub-microscale using a finite element method.
View Article and Find Full Text PDFComput Methods Programs Biomed
March 2021
Background And Objective: Finite element models built from micro-computed tomography scans have become a powerful tool to investigate the mechanical properties of trabecular bone. There are two types of solving algorithms in the finite element method: implicit and explicit. Both of these methods have been utilized to study the trabecular bone.
View Article and Find Full Text PDFOsteoprobe (ActiveLife, Santa Barbara, CA) is a novel handheld microindentation instrument designed to test bone in vivo by measuring a Bone Material Strength index (BMSi). In this paper, the Osteoprobe indentation on a cortical bone is modeled computationally to gain insights into the physical interpretation of the BMSi output. The analysis is conducted using an axisymmetric finite element model with an isotropic viscoelastic-plastic constitutive law with continuum damage.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2017
Reference Point Indentation (RPI) is a novel technique aimed to assess bone quality. Measurements are recorded by the BioDent instrument that applies multiple indents to the same location of cortical bone. Ten RPI parameters are obtained from the resulting force-displacement curves.
View Article and Find Full Text PDFWe aim to achieve an accurate simulation of human cortical bone fracture using the extended finite element method within a commercial finite element software abaqus. A two-dimensional unit cell model of cortical bone is built based on a microscopy image of the mid-diaphysis of tibia of a 70-year-old human male donor. Each phase of this model, an interstitial bone, a cement line, and an osteon, are considered linear elastic and isotropic with material properties obtained by nanoindentation, taken from literature.
View Article and Find Full Text PDFWe aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied.
View Article and Find Full Text PDF