Complications of the worldwide use of non-steroidal anti-inflammatory drugs (NSAIDs) sparked scientists to design novel harmless alternatives as an urgent need. So, a unique hybridization tactic of quinoline/pyrazole/thioamide (4a-c) has been rationalized and synthesized as potential COX-2/15-LOX dual inhibitors, utilizing relevant reported studies on these pharmacophores. Moreover, we extended these preceding hybrids into more varied functionality, bearing crucial thiazole scaffolds(5a-l).
View Article and Find Full Text PDFIn this work, readily achievable synthetic pathways were utilized for construction of a library of N/S analogues based on the pyrazolopyrimidine scaffold with terminal alkyl or aryl fragments. Subsequently, we evaluated the anticancer effects of these novel analogs against the proliferation of various cancer cell lines, including breast, colon, and liver lines. The results were striking, most of the tested molecules exhibited strong and selective cytotoxic activity against the MDA-MB-231 cancer cell line; IC 1.
View Article and Find Full Text PDFCDK2 is a key player in cell cycle processes. It has a crucial role in the progression of various cancers. Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) are two common cancers that affect humans worldwide.
View Article and Find Full Text PDFInt J Mol Sci
October 2023
Based on the biological importance of the thiazole nucleus, we decided to prepare and evaluate the biological activity of some new isatin derivatives containing thiazole moiety. The 5-(piperidin-1-ylsulfonyl)indoline-2,3-dione (1) was prepared and used as a starting material in the synthesis of many isatin derivatives for anticonvulsant evaluation. All the newly synthesized thiazlidino/thiosemicarbazide-indolin-2-one derivatives screened in vivo for their anticonvulsant activity against pentylenetetrazole-induced convulsions in mice.
View Article and Find Full Text PDFA series of novel hybrid pyrazolo[3,4-d]pyramidine derivatives was designed and chemically synthesized in useful yields. The synthesized compounds were structurally characterized by the usual techniques. All the new synthesized compounds were biologically screened in vitro for their antiproliferative activities against a panel of four cancer cell lines, namely HepG-2, MCF-7, HCT-116, and Hela.
View Article and Find Full Text PDFTargeting the epidermal growth factor receptors (EGFRs) with small inhibitor molecules has been validated as a potential therapeutic strategy in cancer therapy. Pyrazolo[3,4-d]pyrimidine is a versatile scaffold that has been exploited for developing potential anticancer agents. On the basis of fragment-based drug discovery, considering the essential pharmacophoric features of potent EGFR tyrosine kinase (TK) inhibitors, herein, we report the design and synthesis of new hybrid molecules of the pyrazolo[3,4-d]pyrimidine scaffold linked with diverse pharmacophoric fragments with reported anticancer potential.
View Article and Find Full Text PDFInhibition of PCAF bromodomain has been validated as a promising strategy for the treatment of cancer. In this study, we report the bioisosteric modification of the first reported potent PCAF bromodomain inhibitor, L-45 to its triazoloquinazoline bioisosteres. Accordingly, three new series of triazoloquinazoline derivatives were designed, synthesized, and assessed for their anticancer activity against a panel of four human cancer cells.
View Article and Find Full Text PDFThroughout this study, we present the victorious synthesis of a novel class of 2(1H)-pyridone molecules, bearing a 4-hydroxyphenyl moiety through a one-pot reaction of 2-cyano-N-(4-hydroxyphenyl)acetamide with cyanoacetamide, acetylacetone or ethyl acetoacetate, and their corresponding aldehydes. In addition, the chromene moiety was introduced into the pyridine skeleton through the cyclization of the cyanoacetamide 2 with salicylaldehyde, followed by treatment with malononitrile, ethyl cyanoacetate, and cyanoacetamide, in order to improve their biological behaviour. Due to their anti-inflammatory, ulcerogenic, and antipyretic characters, the target molecules have undergone in-vitro and in-vivo examination, that display promising results.
View Article and Find Full Text PDFThe lack of effective therapies for epileptic patients and the potentially harmful consequences of untreated seizure incidents have made epileptic disorders in humans a major health concern. Therefore, new and more potent anticonvulsant drugs are continually sought after, to combat epilepsy. On the basis of the pharmacophoric structural specifications of effective α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists with an efficient anticonvulsant activity, the present work reports the design and synthesis of two novel sets of quinoxaline derivatives.
View Article and Find Full Text PDFHerein, we report the synthesis and in vitro antimicrobial evaluation of novel quinoline derivatives as DNA gyrase inhibitors. The preliminary antimicrobial activity was assessed against a panel of pathogenic microbes including Gram-positive bacteria (Streptococcus pneumoniae and Bacillus subtilis), Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), and fungal strains (Aspergillus fumigatus, Syncephalastrum racemosum, Geotrichum candidum, and Candida albicans). Compounds that revealed the best activity were subjected to further biological studies to determine their minimum inhibitory concentrations (MICs) against the selected pathogens as well as their in vitro activity against the E.
View Article and Find Full Text PDFThree novel series of 1,2,4-triazole derivatives were designed and synthesized as potential adenosine A2B receptor antagonists. The design of the new compounds depended on a virtual screening of a previously constructed library of compounds targeting the human adenosine A2B protein. Spectroscopic techniques including H nuclear magnetic resonance (NMR) and C NMR, and infrared and mass spectroscopy were used to confirm the structures of the synthesized compounds.
View Article and Find Full Text PDFThe discovery of potent STAT3 inhibitors has gained noteworthy impetus in the last decade. In line with this trend, considering the proven biological importance of 1,2,4-triazoles, herein, we are reporting the design, synthesis, pharmacokinetic profiles, and in vitro anticancer activity of novel C3-linked 1,2,4-triazole-N-arylamide hybrids and their in silico proposed mechanism of action via inhibition of STAT3. The 1,2,4-triazole scaffold was selected as a privilege ring system that is embedded in core structures of a variety of anticancer drugs which are either in clinical use or still under clinical trials.
View Article and Find Full Text PDFThe antitumor activity of newly synthesised triazolophthalazines (L-45 analogues) 10-32 was evaluated in human hepatocellular carcinoma (HePG-2), breast cancer (MCF-7), prostate cancer (PC3), and colorectal carcinoma (HCT-116) cells. Compounds 17, 18, 25, and 32 showed potent antitumor activity (IC, 2.83-13.
View Article and Find Full Text PDFThree novel series of triazolophthalazine derivatives bearing hydrazone moiety were designed, synthesized, and evaluated for their anticancer activity against four human cancer cell lines by MTT assay. Six derivatives demonstrated comparable activity with Doxorubicin reference drug against the selected cancer cells. Especially, compound 16 showed the most potent activity with IC values of 5.
View Article and Find Full Text PDFMany shreds of evidence have recently correlated A2B receptor antagonism with anticancer activity. Hence, the search for an efficient A2B antagonist may help in the development of a new chemotherapeutic agent. In this article, 23 new derivatives of [1,2,4]triazolo[4,3-a]quinoxaline were designed and synthesized and its structures were confirmed by different spectral data and elemental analyses.
View Article and Find Full Text PDFA novel series of [1,2,4]triazolo[4,3-a]quinoxaline derivatives of different heteroaromatization members were synthesized. The newly synthesized molecules were explored for their potential antimicrobial activities against a panel of pathogenic organisms. Among these derivatives, the chalcone compound 6e with a methoxy substituent exhibited broad potent antimicrobial activity against most of the bacterial and fungal strains.
View Article and Find Full Text PDF3,5-Diamino-4-(3-trifluoromethylphenyldiazenyl)-1H-pyrazole was used as a starting scaffold for the synthesis of new pyrazole-based heterocycles to study their effects on the proliferation of three human cancer cell lines; human liver carcinoma cell line (HepG-2), colon cancer cell line (HCT-116) and human breast cancer cell line (MCF-7) using MTT assay. The synthesized compounds were characterized on the basis of IR, H NMR, C NMR, mass spectral data and elemental analysis results. Cytotoxicity assay results revealed that some of the compounds showed potent growth inhibition against all the cell lines tested, with IC50 values in the range of 0.
View Article and Find Full Text PDFIn our attempt to develop effective EGFR-TKIs, two series of 1H-pyrazolo[3,4-d]pyrimidine derivatives were designed and synthesized. All the newly synthesized compounds were evaluated in vitro for their inhibitory activities against EGFR. Compounds 15, 15, and 18 potently inhibited EGFR at sub-micro molar IC values comparable to that of erlotinib.
View Article and Find Full Text PDFA series of hybrid of triazoloquinoxaline-chalcone derivatives - were designed, synthesized, fully characterized, and evaluated for their cytotoxic activity against three target cell lines: human breast adenocarcinoma (MCF-7), human colon carcinoma (HCT-116), and human hepatocellular carcinoma (HEPG-2). The preliminary results showed that some of these chalcones like -, and - exhibited significant antiproliferative effects against most of the cell lines, with selective or non-selective behavior, indicated by IC values in the 1.65 to 34.
View Article and Find Full Text PDF