Cigarette smoke (CS) causes adverse health effects and, for smoker who do not quit, modified risk tobacco products (MRTPs) can be an alternative to reduce the risk of developing smoking-related diseases. Standard toxicological endpoints can lack sensitivity, with systems toxicology approaches yielding broader insights into toxicological mechanisms. In a 6-month systems toxicology study on ApoE mice, we conducted an integrative multi-omics analysis to assess the effects of aerosols from the Carbon Heated Tobacco Product (CHTP) 1.
View Article and Find Full Text PDFWe compared early biological changes in mice after inhalation exposures to cigarette smoke or e-vapor aerosols (MarkTen cartridge with Carrier, Test-1, or Test-2 formulations; 4% nicotine). Female C57BL/6 mice were exposed to 3R4F cigarette smoke or e-vapor aerosols by nose-only inhalation for up to 4 hours/day, 5 days/week, for 3 weeks. The 3R4F and e-vapor exposures were set to match the target nose port aerosol nicotine concentration (∼41 µg/L).
View Article and Find Full Text PDFSmoking is one of the major modifiable risk factors in the development and progression of chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD). Modified-risk tobacco products (MRTP) are being developed to provide substitute products for smokers who are unable or unwilling to quit, to lessen the smoking-related health risks. In this study, the ApoE mouse model was used to investigate the impact of cigarette smoke (CS) from the reference cigarette 3R4F, or aerosol from two potential MRTPs based on the heat-not-burn principle, carbon heated tobacco product 1.
View Article and Find Full Text PDFSwedish snus is a smokeless tobacco product that contains reduced levels of harmful compounds compared with cigarette smoke. In Sweden, where snus use exceeds smoking among men, relatively low rates of major smoking-related diseases have been recorded. To better understand how snus use could align with current tobacco harm reduction strategies, its potential mechanisms of toxicity must be investigated.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) represents a group of progressive disorders characterized by recurrent chronic inflammation of the gut. Ulcerative colitis and Crohn's disease are the major manifestations of IBD. While our understanding of IBD has progressed in recent years, its etiology is far from being fully understood, resulting in suboptimal treatment options.
View Article and Find Full Text PDFWithin the framework of a systems toxicology approach, the inhalation toxicity of aerosol from a novel tobacco-heating potentially modified risk tobacco product (MRTP), the carbon-heated tobacco product (CHTP) 1.2, was characterized and compared with that of mainstream smoke (CS) from the 3R4F reference cigarette in a 90-day nose-only rat inhalation study in general accordance with OECD TG 413. CHTP1.
View Article and Find Full Text PDFModified risk tobacco products (MRTPs) have the potential to reduce smoking-related health risks. The Carbon Heated Tobacco Product 1.2 (CHTP1.
View Article and Find Full Text PDFCigarette smoke (CS) is affecting considerably the oral mucosa. Heating, instead of burning, tobacco reduces consistently the amount of toxic compounds and may exert a lower impact on oral health than combusted cigarettes. The carbon-heated tobacco product 1.
View Article and Find Full Text PDFThe biological impact of an aerosol of a potential modified-risk tobacco product, carbon heated tobacco product 1.2 (CHTP1.2), was comprehensively assessed for the first time in vitro using human small airway and nasal epithelial models following a systems toxicology approach.
View Article and Find Full Text PDFWhile the toxicity of the main constituents of electronic cigarette (ECIG) liquids, nicotine, propylene glycol (PG), and vegetable glycerin (VG), has been assessed individually in separate studies, limited data on the inhalation toxicity of them is available when in mixtures. In this 90-day subchronic inhalation study, Sprague-Dawley rats were nose-only exposed to filtered air, nebulized vehicle (saline), or three concentrations of PG/VG mixtures, with and without nicotine. Standard toxicological endpoints were complemented by molecular analyses using transcriptomics, proteomics, and lipidomics.
View Article and Find Full Text PDFSmoking is one of the major lifestyle-related risk factors for periodontal diseases. Modified risk tobacco products (MRTP) offer a promising alternative in the harm reduction strategy for adult smokers unable to quit. Using a systems toxicology approach, we investigated and compared the exposure effects of a reference cigarette (3R4F) and a heat-not-burn technology-based candidate MRTP, the Tobacco Heating System (THS) 2.
View Article and Find Full Text PDFThis study reports a comparative assessment of the biological impact of a heated tobacco aerosol from the tobacco heating system (THS) 2.2 and smoke from a combustible 3R4F cigarette. Human organotypic bronchial epithelial cultures were exposed to an aerosol from THS2.
View Article and Find Full Text PDFModified risk tobacco products (MRTPs) are being developed with the aim of reducing smoking-related health risks. The Tobacco Heating System 2.2 (THS2.
View Article and Find Full Text PDFCigarette smoke (CS) has been reported to increase predisposition to oral cancer and is also recognized as a risk factor for many conditions including periodontal diseases, gingivitis, and other benign mucosal disorders. Smoking cessation remains the most effective approach for minimizing the risk of smoking-related diseases. However, reduction of harmful constituents by heating rather than combusting tobacco, without modifying the amount of nicotine, is a promising new paradigm in harm reduction.
View Article and Find Full Text PDFUnlabelled: Smoking is associated with several serious diseases, such as lung cancer and chronic obstructive pulmonary disease (COPD). Within our systems toxicology framework, we are assessing whether potential modified risk tobacco products (MRTP) can reduce smoking-related health risks compared to conventional cigarettes. In this article, we evaluated to what extent 2D-PAGE/MALDI MS/MS (2D-PAGE) can complement the iTRAQ LC-MS/MS results from a previously reported mouse inhalation study, in which we assessed a prototypic MRTP (pMRTP).
View Article and Find Full Text PDFThe liver is one of the most important organs involved in elimination of xenobiotic and potentially toxic substances. Cigarette smoke (CS) contains more than 7000 chemicals, including those that exert biological effects and cause smoking-related diseases. Though CS is not directly hepatotoxic, a growing body of evidence suggests that it may exacerbate pre-existing chronic liver disease.
View Article and Find Full Text PDFSmoking of combustible cigarettes has a major impact on human health. Using a systems toxicology approach in a model of chronic obstructive pulmonary disease (C57BL/6 mice), we assessed the health consequences in mice of an aerosol derived from a prototype modified risk tobacco product (pMRTP) as compared to conventional cigarettes. We investigated physiological and histological endpoints in parallel with transcriptomics, lipidomics, and proteomics profiles in mice exposed to a reference cigarette (3R4F) smoke or a pMRTP aerosol for up to 7 months.
View Article and Find Full Text PDFSmoking cigarettes is a major risk factor in the development and progression of cardiovascular disease (CVD) and chronic obstructive pulmonary disease (COPD). Modified risk tobacco products (MRTPs) are being developed to reduce smoking-related health risks. The goal of this study was to investigate hallmarks of COPD and CVD over an 8-month period in apolipoprotein E-deficient mice exposed to conventional cigarette smoke (CS) or to the aerosol of a candidate MRTP, tobacco heating system (THS) 2.
View Article and Find Full Text PDFThe impact of cigarette smoke (CS), a major cause of lung diseases, on the composition and metabolism of lung lipids is incompletely understood. Here, we integrated quantitative lipidomics and proteomics to investigate exposure effects on lung lipid metabolism in a C57BL/6 and an Apolipoprotein E-deficient (Apoe(-/-)) mouse study. In these studies, mice were exposed to high concentrations of 3R4F reference CS, aerosol from potential modified risk tobacco products (MRTPs) or filtered air (Sham) for up to 8 months.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) is one of the most prevalent lung diseases. Cigarette smoking is the main risk factor for COPD. In this parallel-group clinical study we investigated to what extent the transitions in a chronic-exposure-to-disease model are reflected in the proteome and cellular transcriptome of induced sputum samples.
View Article and Find Full Text PDFModified risk tobacco products (MRTP) are designed to reduce smoking-related health risks. A murine model of chronic obstructive pulmonary disease (COPD) was applied to investigate classical toxicology end points plus systems toxicology (transcriptomics and proteomics). C57BL/6 mice were exposed to conventional cigarette smoke (3R4F), fresh air (sham), or a prototypic MRTP (pMRTP) aerosol for up to 7 months, including a cessation group and a switching-to-pMRTP group (2 months of 3R4F exposure followed by fresh air or pMRTP for up to 5 months respectively).
View Article and Find Full Text PDFCurrent toxicology studies frequently lack measurements at molecular resolution to enable a more mechanism-based and predictive toxicological assessment. Recently, a systems toxicology assessment framework has been proposed, which combines conventional toxicological assessment strategies with system-wide measurement methods and computational analysis approaches from the field of systems biology. Proteomic measurements are an integral component of this integrative strategy because protein alterations closely mirror biological effects, such as biological stress responses or global tissue alterations.
View Article and Find Full Text PDF