Publications by authors named "Ashraf A Bahraq"

This paper evaluates the flowability and strength properties of alkali-activated mortar produced using silicomanganese fume (SiMnF) as the sole binder, combined with alkaline activators and sand, cured at room temperature (23 ± 1 °C). A total of 18 mixes were prepared by varying binder content (370, 470, and 570 kg/m), alkaline activator content (33, 43, and 53% of binder by weight), and NaOH concentration (8 M and 12 M). The SiMnF-based alkali-activated pastes were characterized using SEM, XRD, and FTIR techniques to study morphology, mineral composition, and functional groups, respectively.

View Article and Find Full Text PDF

Silica fume is usually used in UHPC, three times more than that for normal concrete, to enhance mechanical properties and durability. However, silica fume (SF) is an expensive material and has high production costs. This work is aimed at investigating the shrinkage and durability performance of previously developed UHPC mixtures utilizing the two calcareous waste materials, namely limestone powder (LSP) and cement kiln dust (CKD), by partially replacing the silica fume.

View Article and Find Full Text PDF

The stabilization/solidification (S/S) method is one of the most effective remediation techniques for treating contaminated soils. Several stabilizers, mostly the cementitious materials, have been used for the S/S treatment. In this paper, the feasibility of utilizing fuel fly ash (FFA) as a partial replacement of ordinary Portland cement (OPC) for the S/S treatment of marl soil contaminated with heavy metals was investigated.

View Article and Find Full Text PDF

More than half of the CO emissions during the manufacturing of ordinary Portland cement (OPC) occur due to the calcination of calcium carbonate in addition to burning of fossil fuel to power the process. Consequently, there is a concerted effort to decrease the carbon footprint associated with this process, by minimizing the use of OPC. In line with this trend, an attempt was made in the reported study to synthesize a novel alkali-activated binder using CaCO-rich waste limestone powder (WLSP) as a precursor.

View Article and Find Full Text PDF

Alkali-activated concrete (AAC) or binders (AABs) have emerged as a substitute to conventional ordinary Portland cement (OPC)-based concrete owing to their techno-ecological merits. Saudi Arabia has vast resources of natural pozzolan whose impact on some fresh and hardened properties was encouraging; however, the long-term shrinkage behavior of AABs and life cycle assessment (LCA) of the developed product is yet to be explored. Therefore, this study evaluates shrinkage characteristics and LCA of Saudi natural pozzolan (NP)-based AAC.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionldegm56j5iek4krteirdpup52gffkptm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once