Publications by authors named "Ashoori R"

Applying long wavelength periodic potentials on quantum materials has recently been demonstrated to be a promising pathway for engineering novel quantum phases of matter. Here, we utilize twisted bilayer boron nitride (BN) as a moiré substrate for band structure engineering. Small-angle-twisted bilayer BN is endowed with periodically arranged up and down polar domains, which imprints a periodic electrostatic potential on a target two-dimensional (2D) material placed on top.

View Article and Find Full Text PDF

The persistence of voltage-switchable collective electronic phenomena down to the atomic scale has extensive implications for area- and energy-efficient electronics, especially in emerging nonvolatile memory technology. We investigate the performance of a ferroelectric field-effect transistor (FeFET) based on sliding ferroelectricity in bilayer boron nitride at room temperature. Sliding ferroelectricity represents a different form of atomically thin two-dimensional (2D) ferroelectrics, characterized by the switching of out-of-plane polarization through interlayer sliding motion.

View Article and Find Full Text PDF

Real-time probing of electrons can uncover intricate relaxation mechanisms and many-body interactions in strongly correlated materials. Here, we introduce time, momentum, and energy resolved pump-probe tunneling spectroscopy (Tr-MERTS). The method allows the injection of electrons at a particular energy and observation of their subsequent decay in energy-momentum space.

View Article and Find Full Text PDF

Electronic states in quasicrystals generally preclude a Bloch description, rendering them fascinating and enigmatic. Owing to their complexity and scarcity, quasicrystals are underexplored relative to periodic and amorphous structures. Here we introduce a new type of highly tunable quasicrystal easily assembled from periodic components.

View Article and Find Full Text PDF

Co-presence of fluoride (F) and nitrate (NO in water causes numerous health complications. Thus, they should be eliminated by an appropriate method like the EC process. In this research, simultaneous removal of F and NO from synthetic aqueous solution and groundwater has been considered by the EC technique under operational parameters like anode materials (un-coated (Al and Fe) and synthesized coated (Ti/TiRuSnO and Ti/PbO)), cathode materials (Cu, St, and Gr), current density (12, 24, and 36 mA/cm), inter-electrode distance (0.

View Article and Find Full Text PDF

While the potable water disinfection regimen has significantly reduced waterborne diseases, development of disinfection byproducts (DBP) during this process has brought a global threat to the environment and human health. The most notorious water pollutant, humic acid (HA), transforms into carcinogenic byproducts during the disinfection process (chlorination) of water treatment. HA removal methods are neither economic nor widely available.

View Article and Find Full Text PDF

As the world continues to cope with the COVID-19 pandemic, emerging evidence indicates that respiratory transmission may not the only pathway in which the virus can be spread. This review paper aims to summarize current knowledge surrounding possible fecal-oral transmission of SARS-CoV-2. It covers recent evidence of proliferation of SARS-CoV-2 in the gastrointestinal tract, as well as presence and persistence of SARS-CoV-2 in water, and suggested future directions.

View Article and Find Full Text PDF

Wastewater-based epidemiology (WBE) has a long history of identifying a variety of viruses from poliovirus to coronaviruses, including novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The presence and detection of SARS-CoV-2 in human feces and its passage into the water bodies are significant public health challenges. Hence, the hot issue of WBE of SARS-CoV-2 in the coronavirus respiratory disease (COVID-19) pandemic is a matter of utmost importance (e.

View Article and Find Full Text PDF

We create laterally large and low-disorder GaAs quantum-well-based quantum dots that act as small two-dimensional electron systems. We monitor tunneling of single electrons to the dots by means of capacitance measurements and identify single-electron capacitance peaks in the addition spectrum from occupancies of one up to thousands of electrons. The data show two remarkable phenomena in the Landau level filling factor range ν=2 to ν=5 in selective probing of the edge states of the dot: (i) Coulomb blockade peaks arise from the entrance of two electrons rather than one; (ii) at and near ν=5/2 and at fixed gate voltage, these double-height peaks appear uniformly in a magnetic field with a flux periodicity of h/2e, but they group into pairs at other filling factors.

View Article and Find Full Text PDF

The constituent particles of matter can arrange themselves in various ways, giving rise to emergent phenomena that can be surprisingly rich and often cannot be understood by studying only the individual constituents. Discovering and understanding the emergence of such phenomena in quantum materials-especially those in which multiple degrees of freedom or energy scales are delicately balanced-is of fundamental interest to condensed-matter research. Here we report on the surprising observation of emergent ferroelectricity in graphene-based moiré heterostructures.

View Article and Find Full Text PDF

We report the first electronic compressibility measurements of magic-angle twisted bilayer graphene. The evolution of the compressibility with carrier density offers insights into the interaction-driven ground state that have not been accessible in prior transport and tunneling studies. From capacitance measurements, we determine the chemical potential as a function of carrier density and find the widths of the energy gaps at fractional filling of the moiré lattice.

View Article and Find Full Text PDF

A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the 'twist' angle between different layers in the heterostructure.

View Article and Find Full Text PDF

The single-particle spectral function measures the density of electronic states in a material as a function of both momentum and energy, providing central insights into strongly correlated electron phenomena. Here we demonstrate a high-resolution method for measuring the full momentum- and energy-resolved electronic spectral function of a two-dimensional (2D) electronic system embedded in a semiconductor. The technique remains operational in the presence of large externally applied magnetic fields and functions even for electronic systems with zero electrical conductivity or with zero electron density.

View Article and Find Full Text PDF

The high magnetic field electronic structure of bilayer graphene is enhanced by the spin, valley isospin, and an accidental orbital degeneracy, leading to a complex phase diagram of broken symmetry states. Here, we present a technique for measuring the layer-resolved charge density, from which we directly determine the valley and orbital polarization within the zero energy Landau level. Layer polarization evolves in discrete steps across 32 electric field-tuned phase transitions between states of different valley, spin, and orbital order, including previously unobserved orbitally polarized states stabilized by skew interlayer hopping.

View Article and Find Full Text PDF

Helical 1D electronic systems are a promising route towards realizing circuits of topological quantum states that exhibit non-Abelian statistics. Here, we demonstrate a versatile platform to realize 1D systems made by combining quantum Hall (QH) edge states of opposite chiralities in a graphene electron-hole bilayer at moderate magnetic fields. Using this approach, we engineer helical 1D edge conductors where the counterpropagating modes are localized in separate electron and hole layers by a tunable electric field.

View Article and Find Full Text PDF

We report on electronic transport measurements of dual-gated nanodevices of the low-carrier density topological insulator (TI) Bi_{1.5}Sb_{0.5}Te_{1.

View Article and Find Full Text PDF

Low-dimensional electronic systems have traditionally been obtained by electrostatically confining electrons, either in heterostructures or in intrinsically nanoscale materials such as single molecules, nanowires and graphene. Recently, a new method has emerged with the recognition that symmetry-protected topological (SPT) phases, which occur in systems with an energy gap to quasiparticle excitations (such as insulators or superconductors), can host robust surface states that remain gapless as long as the relevant global symmetry remains unbroken. The nature of the charge carriers in SPT surface states is intimately tied to the symmetry of the bulk, resulting in one- and two-dimensional electronic systems with novel properties.

View Article and Find Full Text PDF

The integration of low-temperature scanning-probe techniques and single-electron capacitance spectroscopy represents a powerful tool to study the electronic quantum structure of small systems - including individual atomic dopants in semiconductors. Here we present a capacitance-based method, known as Subsurface Charge Accumulation (SCA) imaging, which is capable of resolving single-electron charging while achieving sufficient spatial resolution to image individual atomic dopants. The use of a capacitance technique enables observation of subsurface features, such as dopants buried many nanometers beneath the surface of a semiconductor material(1,2,3).

View Article and Find Full Text PDF

van der Waals heterostructures constitute a new class of artificial materials formed by stacking atomically thin planar crystals. We demonstrated band structure engineering in a van der Waals heterostructure composed of a monolayer graphene flake coupled to a rotationally aligned hexagonal boron nitride substrate. The spatially varying interlayer atomic registry results in both a local breaking of the carbon sublattice symmetry and a long-range moiré superlattice potential in the graphene.

View Article and Find Full Text PDF

Increases in the gate capacitance of field-effect transistor structures allow the production of lower-power devices that are compatible with higher clock rates, driving the race for developing high-κ dielectrics. However, many-body effects in an electronic system can also enhance capacitance. Onto the electron system that forms at the LaAlO(3)/SrTiO(3) interface, we fabricated top-gate electrodes that can fully deplete the interface of all mobile electrons.

View Article and Find Full Text PDF

The two-dimensional electron system is a powerful laboratory for investigating the physics of interacting particles. Application of a large magnetic field produces massively degenerate quantum levels known as Landau levels; within a Landau level the kinetic energy of the electrons is suppressed, and electron-electron interactions set the only energy scale. Coulomb interactions break the degeneracy of the Landau levels and can cause the electrons to order into complex ground states.

View Article and Find Full Text PDF

Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunnelling, yield measurements of the 'single-particle' density of states spectrum of a system. This density of states is proportional to the probability of successfully injecting or ejecting an electron in these experiments.

View Article and Find Full Text PDF

We use a scanning capacitance probe to image transport in the quantum Hall system. Applying a dc bias voltage to the tip induces a ring-shaped incompressible strip (IS) in the 2D electron system (2DES) that moves with the tip. At certain tip positions, short-range disorder in the 2DES creates a quantum dot island in the IS.

View Article and Find Full Text PDF