2D materials exhibit exceptional properties as compared to their macroscopic counterparts, with promising applications in nearly every area of science and technology. To unlock further functionality, the chemical functionalization of 2D structures is a powerful technique that enables tunability and new properties within these materials. Here, the successful effort to chemically functionalize hexagonal boron nitride (hBN), a chemically inert 2D ceramic with weak interlayer forces, using a gas-phase fluorination process is exploited.
View Article and Find Full Text PDFHexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, making the chemical functionalization of hBN challenging. Here, a simple, scalable strategy to fluorinate hBN using a direct gas-phase fluorination technique is reported.
View Article and Find Full Text PDFHexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years.
View Article and Find Full Text PDFCementitious structures exhibit high compression strength but suffer from inherent brittleness. Conversely, nature creates structures using mostly brittle phases that overcome the strength-toughness trade-off, mainly through internalized packaging of brittle phases with soft organic binders. Here, we develop complex architectures of cementitious materials using an inverse replica approach where a soft polymer phase emerges as an external conformal coating.
View Article and Find Full Text PDFStudies on intercalation or substitution of atoms into layered two-dimensional (2D) materials are rapidly expanding and gaining significant consideration due to their importance in electronics, catalysts, batteries, sensors, In this manuscript, we report a straightforward method to create sulphur (S) deficient molybdenum (Mo) sulfide (MoS ) structures and substitute them with zerovalent copper (Cu) atoms using a colloidal synthesis method. The synthesized materials were studied using several techniques to understand the proportion and position of copper atoms and the effect of copper functionalization. Specifically, the impact of change in the ratio of Cu : S and the hydrogen evolution reaction (HER) activity of the derived materials were evaluated.
View Article and Find Full Text PDFNanoparticles activated by external beams, such as ionizing radiation, laser light, or magnetic fields, have attracted significant research interest as a possible modality for treating solid tumors. From producing hyperthermic conditions to generating reactive oxygen species, a wide range of externally activated mechanisms have been explored for producing cytotoxicity within tumors with high spatiotemporal control. To further improve tumoricidal effects, recent trends in the literature have focused on stimulating the immune system through externally activated treatment strategies that result in immunogenic cell death.
View Article and Find Full Text PDFNanoparticles play a significant role in various fields ranging from electronics to composite materials development. Among them, metal nanoparticles have attracted much attention in recent decades due to their high surface area, selectivity, tunable morphologies, and remarkable catalytic activity. In this review, we discuss various possibilities for the synthesis of different metal nanoparticles; specifically, we address some of the green synthesis approaches.
View Article and Find Full Text PDFThe design of new and improved catalysts is an exciting field and is being constantly improved for the development of economically, highly efficient material and for the possible replacement of platinum (Pt)-based catalysts. In this, carbon-based materials play a pivotal role due to their easy availability and environment friendliness. Herein, we report a simple technique to synthesize layered, nitrogen-doped, porous carbon and activated carbons from an abundant petroleum asphaltene.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
Luminescent carbon dots (Cdots) synthesized using inexpensive precursors have inspired tremendous research interest because of their superior properties and applicability in various fields. In this work, we report a simple, economical, green route for the synthesis of multifunctional fluorescent Cdots prepared from a natural, low-cost source: collagen extracted from animal skin wastes. The as-synthesized metal-free Cdots were found to be in the size range of ∼1.
View Article and Find Full Text PDFThree-dimensional, functional, and porous scaffolds can find applications in a variety of fields. Here we report the synthesis of hierarchical and interconnected porous sponges using a simple freeze-drying technique, employing collagen extracted from animal skin wastes and superparamagnetic iron oxide nanoparticles. The ultralightweight, high-surface-area sponges exhibit excellent mechanical stability and enhanced absorption of organic contaminants such as oils and dye molecules.
View Article and Find Full Text PDFCollagen (C) and cellulose are prominent biopolymers from the animal and plant kingdom and widely used in bioengineering. Albumin, on the other hand, is the most abundant plasma protein present in mammalian blood. In this work, collagen extracted from animal skin waste was blended with hydroxyethyl cellulose (HEC) and bovine serum albumin (A) and wet-spun to form hybrid biodegradable C/HEC/A fibers.
View Article and Find Full Text PDFBiocatalysis based effluent treatment has outclassed the presently favored physico-chemical treatments due to nil sludge production and monetary savings. Azo dyes are commonly employed in the leather industry and pose a great threat to the environment. Here, we show the degradation of C.
View Article and Find Full Text PDFA hybrid protein fiber from different protein sources such as casein and soybean using wet-spinning technique was prepared. The casein/soybean hybrid fibers were synthesized at different weight ratios such as 100/0 (casein), 75/25, 50/50, 25/75, and 0/100 (soy) and characterized. Electron microscopic analysis confirmed the growth of pure and hybrid fibers and shows an increased surface roughness as the soy concentration increases in the hybrid fibers.
View Article and Find Full Text PDF