Publications by authors named "Ashokanand Vimalanandan"

A major step in the development of (electro)catalysis would be the possibility to estimate accurately the energetics of adsorption processes related to reaction intermediates. Computational chemistry (e.g.

View Article and Find Full Text PDF

A novel bilayer coating system for autonomous corrosion-triggered self-healing is demonstrated. The storage of the encapsulated monomer and the catalyst is separated in two different layers. The encapsulated catalyst is stored inside a metallic coating, which ensures its activity even for an extended exposure time.

View Article and Find Full Text PDF

Raspberry-shaped redox-responsive capsules for storing corrosion inhibitors are introduced, targeted to solve the drawbacks of conducting-polymer-based coating systems for corrosion protection. These capsules synthesized via the miniemulsion technique have a remarkable release property upon reduction (onset of corrosion) and cease release upon reoxidation (passivation of the defect). The self-healing capability is demonstrated by application of these capsules as part of a composite coating on zinc.

View Article and Find Full Text PDF

Redox-responsive nanocapsules consisting of conductive polyaniline and polypyrrole shells were successfully synthesized by using the interface of miniemulsion droplets as a template for oxidative polymerizations. The redox properties of the capsules were investigated by optical spectroscopies, electron microscopy, and cyclic voltammetry. Self-healing (SH) chemicals such as diglycidyl ether or dicarboxylic acid terminated polydimethylsiloxane (PDMS-DE or PDMS-DC) were encapsulated into the nanocapsules during the miniemulsion process and their redox-responsive release was monitored by (1)H NMR spectroscopy.

View Article and Find Full Text PDF

Recently, it was shown that the surface modification of silica particles with -SH functional groups enables their electro-codeposition with zinc. Here, however, we report that no incorporation into Zn can be observed for such modified particles with diameters of <100 nm, while incorporation is possible for particles with diameters of 225 nm and larger. Furthermore, when silica particles are functionalized with mixtures of -SH and -Cl functional groups, which affect the interface energy at the particle/metal interface differently but have similar interfacial energies for the particle/electrolyte interface, it is found that, for successful incorporation of the particles, a minimum amount of -SH functional groups is needed.

View Article and Find Full Text PDF