Before preparing for division, bacteria stop their motility. During the exponential growth phase in Escherichia coli, when the rate of bacterial division is highest, the expression of flagellar genes is repressed and bacterial adhesion is enhanced. Hence, it is evident that cell division and motility in bacteria are linked; however, the specific molecular mechanism by which these two processes are linked is not known.
View Article and Find Full Text PDFBacterial division is mediated by a protein complex called the Z-ring, and Z-ring associated protein E (ZapE) is a Z-ring-associated protein that acts as its negative regulator. In the present study, we show that treatment of Escherichia coli with the antibiotic aztreonam stabilized the Z-ring, induced filamentation, and reduced viability, with similar phenotypes being observed in ZapE deletion strains. Aztreonam treatment decreased ZapE expression, and the overexpression of ZapE rescued filamentous morphology significantly and viability partially.
View Article and Find Full Text PDFMin system in Escherichia coli is one of the well-studied phenomena of self-organization and spatial distribution of proteins. Several multidisciplinary approaches were used to study the oscillation phenomena of the Min system. The focus of most of these studies was to understand the role of Min system in placement of the Z-ring to the mid-cell and to characterize its interaction with divisome proteins.
View Article and Find Full Text PDFCell division in bacteria is a highly controlled and regulated process. FtsZ, a bacterial cytoskeletal protein, forms a ring-like structure known as the Z-ring and recruits more than a dozen other cell division proteins. The Min system oscillates between the poles and inhibits the Z-ring formation at the poles by perturbing FtsZ assembly.
View Article and Find Full Text PDFThe increase in antibiotic resistance has become a major health concern in recent times. It is therefore essential to identify novel antibacterial targets as well as discover and develop new antibacterial agents. FtsZ, a highly conserved bacterial protein, is responsible for the initiation of cell division in bacteria.
View Article and Find Full Text PDFMononuclear half-sandwiched complexes [(p-cym)RuCl(bpmo)](ClO4) {[1](ClO4)} and [(p-cym)RuCl(bpms)](PF6) {[2](PF6)} have been prepared by reacting heteroscorpionate ligands bpmo = 2-methoxyphenyl-bis(3,5-dimethylpyrazol-1-yl)methane and bpms = 2-methylthiophenyl-bis(3,5-dimethylpyrazol-1-yl)methane, respectively, with a dimeric precursor complex [(p-cym)RuCl(μ-Cl)]2 (p-cym = 1-isopropyl-4-methylbenzene) in methanol. The corresponding aqua derivatives [(p-cym)Ru(H2O)(bpmo)](ClO4)2 {[3](ClO4)2} and [(p-cym)Ru(H2O)(bpms)](PF6)2 {[4](PF6)2} are obtained from {[1](ClO4)} and {[2](PF6)}, respectively, via Cl(-)/H2O exchange process in the presence of appropriate equivalents of AgClO4/AgNO3 + KPF6 in a methanol-water mixture. The molecular structures of the complexes {[1]Cl, [3](ClO4)2 and [4](PF6)(NO3)} are authenticated by their single crystal X-ray structures.
View Article and Find Full Text PDF