J Pharmacol Exp Ther
October 2022
Nonalcoholic fatty liver disease (NAFLD) is a chronic condition in which excess lipids accumulate in the liver and can lead to a range of progressive liver disorders including non-alcoholic steatohepatitis, liver cirrhosis, and hepatocellular carcinoma. While lifestyle and diet modifications have proven to be effective as NAFLD treatments, they are not sustainable in the long-term, and currently no pharmacological therapies are approved to treat NAFLD. Our previous studies demonstrated that cinnabarinic acid (CA), a novel endogenous Aryl hydrocarbon Receptor (AhR) agonist, activates the AhR target gene, Stanniocalcin 2, and confers cytoprotection against a plethora of ER/oxidative stressors.
View Article and Find Full Text PDFMaternal obesity and consumption of a high-fat diet significantly elevate risk for pediatric nonalcoholic fatty liver disease (NAFLD), affecting 10% of children in the US. Almost half of these children are diagnosed with nonalcoholic steatohepatitis (NASH), a leading etiology for liver transplant. Animal models show that signs of liver injury and perturbed lipid metabolism associated with NAFLD begin in utero; however, safe dietary therapeutics to blunt developmental programming of NAFLD are unavailable.
View Article and Find Full Text PDFIron accumulates in the vital organs with aging. This is associated with oxidative stress, inflammation, and mitochondrial dysfunction leading to age-related disorders. Abnormal iron levels are linked to neurodegenerative diseases, liver injury, cancer, and ocular diseases.
View Article and Find Full Text PDFMaternal consumption of a high-fat, Western-style diet (WD) disrupts the maternal/infant microbiome and contributes to developmental programming of the immune system and nonalcoholic fatty liver disease (NAFLD) in the offspring. Epigenetic changes, including non-coding miRNAs in the fetus and/or placenta may also underlie this risk. We previously showed that obese nonhuman primates fed a WD during pregnancy results in the loss of beneficial maternal gut microbes and dysregulation of cellular metabolism and mitochondrial dysfunction in the fetal liver, leading to a perturbed postnatal immune response with accelerated NAFLD in juvenile offspring.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
September 2021
Iron accumulation is frequently associated with chronic liver diseases. However, our knowledge on how iron contributes to the liver injury is limited. Aberrant Wnt/β-catenin signaling is a hallmark of several hepatic pathologies.
View Article and Find Full Text PDFAccumulating evidence strongly implicates iron in the pathogenesis of aging and disease. Iron levels have been found to increase with age in both the human and mouse retinas. We and others have shown that retinal diseases such as age-related macular degeneration and diabetic retinopathy are associated with disrupted iron homeostasis, resulting in retinal iron accumulation.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is the number one chronic liver disease worldwide and is estimated to affect nearly 40% of obese youth and up to 10% of the general pediatric population without any obvious signs or symptoms. Although the early stages of NAFLD are reversible with diet and lifestyle modifications, detecting such stages is hindered by a lack of non-invasive methods of risk assessment and diagnosis. This absence of non-invasive means of diagnosis is directly related to the scarcity of long-term prospective studies of pediatric NAFLD in children and adolescents.
View Article and Find Full Text PDFDiabetic nephropathy (DN) is the most common cause of end-stage renal disease associated with high mortality worldwide. Increases in iron levels have been reported in diabetic rat kidneys as well as in human urine of patients with diabetes. In addition, a low-iron diet or iron chelators delay the progression of DN in patients with diabetes and in animal models of diabetes.
View Article and Find Full Text PDFConsumption of food that surpasses the metabolic necessity of the body leads to an epidemic condition termed obesity, which causes several metabolic disorders including oxidative damage. Dietary intervention can enlighten the mechanisms and therapeutics associated with these metabolic disorders. The reported studies related to diet include fat of different kinds and from different sources, however they lack dose response aspects.
View Article and Find Full Text PDFLipid generates reactive oxygen species (ROS) in consequence to mitochondrial fission followed by inflammation in propagating hepatic fibrosis. The interaction of SIRT1/Mitofusin2 is critical for maintaining mitochondrial integrity and functioning, which is disrupted upon excess lipid infiltration during the progression of steatohepatitis. The complex interplay between hepatic stellate cells and steatotic hepatocytes is critically regulated by extracellular factors including increased circulating free fatty acids during fibrogenesis.
View Article and Find Full Text PDFInsulin resistance (IR) is an important determinant of type-2 diabetes mellitus (T2DM). Free fatty acids (FFAs) induce IR by various mechanisms. A surfeit of circulating FFA leads to intra-myocellular lipid accumulation that induces mitochondrial ROS generation and worsens IR.
View Article and Find Full Text PDFBackgrounds/aims: The lipid induced insulin resistance is a major pathophysiologic mechanism underlying glucose intolerance of varying severity. PPARα-agonists are proven as effective hypolipidemic agents. The aim of this study was to see if impaired glucose uptake in palmitate treated myotubes is reversed by fenofibrate.
View Article and Find Full Text PDFBackground: Emergence of resistance against commonly available drugs poses a major threat in the treatment of visceral leishmaniasis (VL), particularly in the Indian subcontinent. Absence of any licensed vaccine against VL emphasizes the urgent need to develop an effective alternative vaccination strategy.
Methodology: We developed a novel heterologous prime boost immunization strategy using kinetoplastid membrane protein-11 (KMP-11) DNA priming followed by boosting with recombinant vaccinia virus (rVV) expressing the same antigen.