A diverse antibody repertoire is essential for humoral immunity. Antibody diversification requires the introduction of deoxyuridine (dU) mutations within immunoglobulin genes to initiate somatic hypermutation (SHM) and class switch recombination (CSR). dUs are normally recognized and excised by the base excision repair (BER) protein uracil-DNA glycosylase 2 (UNG2).
View Article and Find Full Text PDFThe APOBEC3 enzymes convert cytosines in single-stranded DNA to uracils to protect against viruses and retrotransposons but can contribute to mutations that diversify tumors. To understand the mechanism of mutagenesis, we map the uracils resulting from expression of APOBEC3B or its catalytic carboxy-terminal domain (CTD) in Escherichia coli. Like APOBEC3A, the uracilomes of A3B and A3B-CTD show a preference to deaminate cytosines near transcription start sites and the lagging-strand replication templates and in hairpin loops.
View Article and Find Full Text PDFThe APOBEC3 family of enzymes convert cytosines in single-stranded DNA to uracils thereby causing mutations. These enzymes protect human cells against viruses and retrotransposons, but in many cancers they contribute to mutations that diversify the tumors and help them escape anticancer drug treatments. To understand the mechanism of mutagenesis by APOBEC3B, we expressed the complete enzyme or its catalytic carboxy-terminal domain (CTD) in repair-deficient and mapped the resulting uracils using uracil pull-down and sequencing technology.
View Article and Find Full Text PDFMurine FAM72A, mFAM72A, binds the nuclear form of uracil-DNA glycosylase, mUNG2, inhibits its activity and causes its degradation. In immunoprecipitation assays the human paralog, hFAM72A, binds hUNG2 and is a potential anti-cancer drug target because of its high expression in many cancers. Using purified mFAM72A, and mUNG2 proteins we show that mFAM72A binds mUNG2, and the N-terminal 25 amino acids of mUNG2 bind mFAM72A at a nanomolar dissociation constant.
View Article and Find Full Text PDFActivation-induced deaminase (AID) is a DNA-cytosine deaminase that mediates maturation of antibodies through somatic hypermutation and class-switch recombination. While it causes mutations in immunoglobulin heavy and light chain genes and strand breaks in the switch regions of the immunoglobulin heavy chain gene, it largely avoids causing such damage in the rest of the genome. To help understand targeting by human AID, we expressed it in repair-deficient Escherichia coli and mapped the created uracils in the genomic DNA using uracil pull-down and sequencing, UPD-seq.
View Article and Find Full Text PDFActivation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown.
View Article and Find Full Text PDFAPOBEC mutagenesis, a major driver of cancer evolution, is known for targeting TpC sites in DNA. Recently, we showed that APOBEC3A (A3A) targets DNA hairpin loops. Here, we show that DNA secondary structure is in fact an orthogonal influence on A3A substrate optimality and, surprisingly, can override the TpC sequence preference.
View Article and Find Full Text PDFIdentifying the mechanisms mediating cisplatin response is essential for improving patient response. Previous research has identified base excision repair (BER) and mismatch repair (MMR) activity in sensitizing cells to cisplatin. Cisplatin forms DNA adducts including interstrand cross-links (ICLs) that distort the DNA helix, forcing adjacent cytosines to become extrahelical.
View Article and Find Full Text PDFThe AID/APOBEC enzymes deaminate cytosines in single-stranded DNA (ssDNA) and play key roles in innate and adaptive immunity. The resulting uracils cause mutations and strand breaks that inactivate viruses and diversify antibody repertoire. Mutational evidence suggests that two members of this family, APOBEC3A (A3A) and APOBEC3B, deaminate cytosines in the lagging-strand template during replication.
View Article and Find Full Text PDFAPOBEC3 family of DNA-cytosine deaminases inactivate and mutate several human viruses. We constructed a human cell line that is inducible for EGFP-tagged APOBEC3A and found A3A predominantly in the nuclei. When these cells were infected with Herpes Simplex Virus-1, virus titer was unaffected by A3A expression despite nuclear virus replication.
View Article and Find Full Text PDFActivation-induced deaminase (AID) and apolipoprotein B mRNA-editing enzyme catalytic subunit (APOBEC) enzymes convert cytosines to uracils, creating signature mutations that have been used to predict sites targeted by these enzymes. Mutation-based targeting maps are distorted by the error-prone or error-free repair of these uracils and by selection pressures. To directly map uracils created by AID/APOBEC enzymes, here we used uracil-DNA glycosylase and an alkoxyamine to covalently tag and sequence uracil-containing DNA fragments (UPD-Seq).
View Article and Find Full Text PDFPhorbol 12-myristate 13-acetate (PMA) promotes skin cancer in rodents. The mutations found in murine tumors are similar to those found in human skin cancers, and PMA promotes proliferation of human skin cells. PMA treatment of human keratinocytes increases the synthesis of APOBEC3A, an enzyme that converts cytosines in single-stranded DNA to uracil, and mutations in a variety of human cancers are attributed to APOBEC3A or APOBEC3B expression.
View Article and Find Full Text PDFRecombination and mutagenesis are elevated by active transcription. The correlation between transcription and genome instability is largely explained by the topological and structural changes in DNA and the associated physical obstacles generated by the transcription machinery. However, such explanation does not directly account for the unique types of mutations originating from the non-canonical residues, uracil or ribonucleotide, which are also elevated at highly transcribed regions.
View Article and Find Full Text PDFMost B cell cancers overexpress the enzyme activation-induced deaminase at high levels and this enzyme converts cytosines in DNA to uracil. The constitutive expression of this enzyme in these cells greatly increases the uracil content of their genomes. We show here that these genomes also contain high levels of abasic sites presumably created during the repair of uracils through base-excision repair.
View Article and Find Full Text PDFBackground & Objectives: The pathogenicity of the nosocomial pathogens, Pseudomonas aeruginosa and Acinetobacter baumannii is regulated by their quorum sensing (QS) systems. The objective of the present study was to examine the effect of the cold ethyl acetate extract of Tinospora cordifolia stem on virulence and biofilm development in the wild type and clinical strains of P. aeruginosa and A.
View Article and Find Full Text PDFThe AID/APOBEC family enzymes convert cytosines in single-stranded DNA to uracils, causing base substitutions and strand breaks. They are induced by cytokines produced during the body's inflammatory response to infections, and they help combat infections through diverse mechanisms. AID is essential for the maturation of antibodies and causes mutations and deletions in antibody genes through somatic hypermutation (SHM) and class-switch recombination (CSR) processes.
View Article and Find Full Text PDFThe human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome.
View Article and Find Full Text PDFThe rate of cytosine deamination is much higher in single-stranded DNA (ssDNA) than in double-stranded DNA, and copying the resulting uracils causes C to T mutations. To study this phenomenon, the catalytic domain of APOBEC3G (A3G-CTD), an ssDNA-specific cytosine deaminase, was expressed in an Escherichia coli strain defective in uracil repair (ung mutant), and the mutations that accumulated over thousands of generations were determined by whole-genome sequencing. C:G to T:A transitions dominated, with significantly more cytosines mutated to thymine in the lagging-strand template (LGST) than in the leading-strand template (LDST).
View Article and Find Full Text PDFHuman APOBEC3B deaminates cytosines in DNA and belongs to the AID/APOBEC family of enzymes. These proteins are involved in innate and adaptive immunity and may cause mutations in a variety of cancers. To characterize its ability to convert cytosines into uracils, we tested several derivatives of APOBEC3B gene for their ability to cause mutations in Escherichia coli.
View Article and Find Full Text PDFA number of endogenous and exogenous agents, and cellular processes create abasic (AP) sites in DNA. If unrepaired, AP sites cause mutations, strand breaks and cell death. Aldehyde-reactive agent methoxyamine reacts with AP sites and blocks their repair.
View Article and Find Full Text PDFTranscription requires unwinding complementary DNA strands, generating torsional stress, and sensitizing the exposed single strands to chemical reactions and endogenous damaging agents. In addition, transcription can occur concomitantly with the other major DNA metabolic processes (replication, repair, and recombination), creating opportunities for either cooperation or conflict. Genetic modifications associated with transcription are a global issue in the small genomes of microorganisms in which noncoding sequences are rare.
View Article and Find Full Text PDFActivation-induced deaminase (AID) converts DNA cytosines to uracils in immunoglobulin genes, creating antibody diversification. It also causes mutations and translocations that promote cancer. We examined the interplay between uracil creation by AID and its removal by UNG2 glycosylase in splenocytes undergoing maturation and in B cell cancers.
View Article and Find Full Text PDFExperimental data exists for only a vanishingly small fraction of sequenced microbial genes. This community page discusses the progress made by the COMBREX project to address this important issue using both computational and experimental resources.
View Article and Find Full Text PDFChromosomal DNA must be in single-strand form for important transactions such as replication, transcription, and recombination to occur. The single-strand DNA (ssDNA) is more prone to damage than double-strand DNA (dsDNA), due to greater exposure of chemically reactive moieties in the nitrogenous bases. Thus, there can be agents that damage regions of ssDNA in vivo while being inert toward dsDNA.
View Article and Find Full Text PDF