Publications by authors named "Ashna Ramkisoensing"

Ambient light detection is important for the synchronization of the circadian clock to the external solar cycle. Light signals are sent to the suprachiasmatic nuclei (SCN), the site of the major circadian pacemaker. It has been assumed that cone photoreceptors contribute minimally to synchronization.

View Article and Find Full Text PDF

Artificial light exposure is associated with dyslipidemia in humans, which is a major risk factor for the development of atherosclerotic cardiovascular disease. However, it remains unclear whether artificial light at night can exacerbate atherosclerosis. In this study, we exposed female APOE*3-Leiden.

View Article and Find Full Text PDF

Context: Seasonal variation in cold and light exposure may influence metabolic health.

Objective: We assessed the associations of bright sunlight and outdoor temperature with measures of glucose and lipid metabolism in two populations of middle-aged European subjects.

Design: Cross-sectional study.

View Article and Find Full Text PDF

Many favorable metabolic effects have been attributed to thermogenic activity of brown adipose tissue (BAT). Yet, time of day has rarely been considered in this field of research. Here, we show that a diurnal rhythm in BAT activity regulates plasma lipid metabolism.

View Article and Find Full Text PDF

In mammals, the suprachiasmatic nucleus (SCN) functions as a circadian clock that drives 24-h rhythms in both physiology and behavior. The SCN is a multicellular oscillator in which individual neurons function as cell-autonomous oscillators. The production of a coherent output rhythm is dependent upon mutual synchronization among single cells and requires both synaptic communication and gap junctions.

View Article and Find Full Text PDF

Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure.

View Article and Find Full Text PDF

In mammals, the suprachiasmatic nucleus (SCN) contains a central clock that synchronizes daily (i.e., 24-h) rhythms in physiology and behavior.

View Article and Find Full Text PDF

In mammals, the central clock in the suprachiasmatic nucleus (SCN) controls physiological and behavioral circadian rhythms and is entrained to the external light-dark cycle. The ability of the SCN to entrain can be measured by exposing the animal to a light-dark cycle with a duration that deviates from 24 h (T-cycles); a wider entrainment range reflects a higher ability to entrain. The neurons of the SCN are either light responsive or light unresponsive and are mutually synchronized.

View Article and Find Full Text PDF

The suprachiasmatic nucleus (SCN) adapts to both the external light-dark (LD) cycle and seasonal changes in day length. In short photoperiods, single-cell activity patterns are tightly synchronized (i.e.

View Article and Find Full Text PDF

Light information is transmitted to the central clock of the suprachiasmatic nuclei (SCN) for daily synchronization to the external solar cycle. Essential for synchronization is the capacity of SCN neurons to respond in a sustained and irradiance-dependent manner to light. Melanopsin has been considered to mediate this photosensory task of irradiance detection.

View Article and Find Full Text PDF

Aging is associated with a deterioration of daily (circadian) rhythms in physiology and behavior. Deficits in the function of the central circadian pacemaker in the suprachiasmatic nucleus (SCN) have been implicated, but the responsible mechanisms have not been clearly delineated. In this report, we characterize the progression of rhythm deterioration in mice to 900 d of age.

View Article and Find Full Text PDF