Publications by authors named "Ashlynn R Daughton"

Background: Health authorities can minimize the impact of an emergent infectious disease outbreak through effective and timely risk communication, which can build trust and adherence to subsequent behavioral messaging. Monitoring the psychological impacts of an outbreak, as well as public adherence to such messaging, is also important for minimizing long-term effects of an outbreak.

Objective: We used social media data from Twitter to identify human behaviors relevant to COVID-19 transmission, as well as the perceived impacts of COVID-19 on individuals, as a first step toward real-time monitoring of public perceptions to inform public health communications.

View Article and Find Full Text PDF

Background: The COVID-19 outbreak has left many people isolated within their homes; these people are turning to social media for news and social connection, which leaves them vulnerable to believing and sharing misinformation. Health-related misinformation threatens adherence to public health messaging, and monitoring its spread on social media is critical to understanding the evolution of ideas that have potentially negative public health impacts.

Objective: The aim of this study is to use Twitter data to explore methods to characterize and classify four COVID-19 conspiracy theories and to provide context for each of these conspiracy theories through the first 5 months of the pandemic.

View Article and Find Full Text PDF

Background: Currently, the identification of infectious disease re-emergence is performed without describing specific quantitative criteria that can be used to identify re-emergence events consistently. This practice may lead to ineffective mitigation. In addition, identification of factors contributing to local disease re-emergence and assessment of global disease re-emergence require access to data about disease incidence and a large number of factors at the local level for the entire world.

View Article and Find Full Text PDF

Background: Internet data can be used to improve infectious disease models. However, the representativeness and individual-level validity of internet-derived measures are largely unexplored as this requires ground truth data for study.

Objective: This study sought to identify relationships between Web-based behaviors and/or conversation topics and health status using a ground truth, survey-based dataset.

View Article and Find Full Text PDF

Seasonal influenza is a sometimes surprisingly impactful disease, causing thousands of deaths per year along with much additional morbidity. Timely knowledge of the outbreak state is valuable for managing an effective response. The current state of the art is to gather this knowledge using in-person patient contact.

View Article and Find Full Text PDF

Infectious disease reemergence is an important yet ambiguous concept that lacks a quantitative definition. Currently, reemergence is identified without specific criteria describing what constitutes a reemergent event. This practice affects reproducible assessments of high-consequence public health events and disease response prioritization.

View Article and Find Full Text PDF

This work examines Twitter discussion surrounding the 2015 outbreak of Zika, a virus that is most often mild but has been associated with serious birth defects and neurological syndromes. We introduce and analyze a collection of 3.9 million tweets mentioning Zika geolocated to North and South America, where the virus is most prevalent.

View Article and Find Full Text PDF

Background: An estimated 3.9 billion individuals live in a location endemic for common mosquito-borne diseases. The emergence of Zika virus in South America in 2015 marked the largest known Zika outbreak and caused hundreds of thousands of infections.

View Article and Find Full Text PDF

Background: Information from historical infectious disease outbreaks provides real-world data about outbreaks and their impacts on affected populations. These data can be used to develop a picture of an unfolding outbreak in its early stages, when incoming information is sparse and isolated, to identify effective control measures and guide their implementation.

Objective: This study aimed to develop a publicly accessible Web-based visual analytic called Analytics for the Investigation of Disease Outbreaks (AIDO) that uses historical disease outbreak information for decision support and situational awareness of an unfolding outbreak.

View Article and Find Full Text PDF

The ability to produce timely and accurate flu forecasts in the United States can significantly impact public health. Augmenting forecasts with internet data has shown promise for improving forecast accuracy and timeliness in controlled settings, but results in practice are less convincing, as models augmented with internet data have not consistently outperformed models without internet data. In this paper, we perform a controlled experiment, taking into account data backfill, to improve clarity on the benefits and limitations of augmenting an already good flu forecasting model with internet-based nowcasts.

View Article and Find Full Text PDF

Accessible epidemiological data are of great value for emergency preparedness and response, understanding disease progression through a population, and building statistical and mechanistic disease models that enable forecasting. The status quo, however, renders acquiring and using such data difficult in practice. In many cases, a primary way of obtaining epidemiological data is through the internet, but the methods by which the data are presented to the public often differ drastically among institutions.

View Article and Find Full Text PDF

Biosurveillance, a relatively young field, has recently increased in importance because of increasing emphasis on global health. Databases and tools describing particular subsets of disease are becoming increasingly common in the field. Here, we present an infectious disease database that includes diseases of biosurveillance relevance and an extensible framework for the easy expansion of the database.

View Article and Find Full Text PDF

Effective disease monitoring provides a foundation for effective public health systems. This has historically been accomplished with patient contact and bureaucratic aggregation, which tends to be slow and expensive. Recent internet-based approaches promise to be real-time and cheap, with few parameters.

View Article and Find Full Text PDF

Infectious diseases are a leading cause of death globally. Decisions surrounding how to control an infectious disease outbreak currently rely on a subjective process involving surveillance and expert opinion. However, there are many situations where neither may be available.

View Article and Find Full Text PDF

Background: Premastication, the transfer of pre-chewed food, is a common infant and young child feeding practice among the Tsimane, forager-horticulturalists living in the Bolivian Amazon. Research conducted primarily with Western populations has shown that infants harbor distinct oral microbiota from their mothers. Premastication, which is less common in these populations, may influence the colonization and maturation of infant oral microbiota, including via transmission of oral pathogens.

View Article and Find Full Text PDF

Influenza causes significant morbidity and mortality each year, with 2-8% of weekly outpatient visits around the United States for influenza-like-illness (ILI) during the peak of the season. Effective use of existing flu surveillance data allows officials to understand and predict current flu outbreaks and can contribute to reductions in influenza morbidity and mortality. Previous work used the 2009-2010 influenza season to investigate the possibility of using existing military and civilian surveillance systems to improve early detection of flu outbreaks.

View Article and Find Full Text PDF

We present an analysis of the diagnostic technologies that were used to identify historical outbreaks of Ebola virus disease and consider systematic surveillance strategies that may greatly reduce the peak size of future epidemics. We observe that clinical signs and symptoms alone are often insufficient to recognize index cases of diseases of global concern against the considerable background infectious disease burden that is present throughout the developing world. We propose a simple sampling strategy to enrich in especially dangerous pathogens with a low background for molecular diagnostics by targeting blood-borne pathogens in the healthiest age groups.

View Article and Find Full Text PDF

We report here the genome sequence of Thauera sp. strain SWB20, isolated from a Singaporean wastewater treatment facility using gel microdroplets (GMDs) and single-cell genomics (SCG). This approach provided a single clonal microcolony that was sufficient to obtain a 4.

View Article and Find Full Text PDF

Assembling a complete genome from a single bacterial cell, termed single-cell genomics, is challenging with current technologies. Recovery rates of complete genomes from fragmented assemblies of single-cell templates significantly vary. Although increasing the amount of genomic template material by standard cultivation improves recovery, most bacteria are unfortunately not amenable to traditional cultivation, possibly owing to the lack of unidentified, yet necessary, growth signals and/or specific symbiotic influences.

View Article and Find Full Text PDF

Background: Single cell genomics has revolutionized microbial sequencing, but complete coverage of genomes in complex microbiomes is imperfect due to enormous variation in organismal abundance and amplification bias. Empirical methods that complement rapidly improving bioinformatic tools will improve characterization of microbiomes and facilitate better genome coverage for low abundance microbes.

Methods: We describe a new approach to sequencing individual species from microbiomes that combines antibody phage display against intact bacteria with fluorescence activated cell sorting (FACS).

View Article and Find Full Text PDF

The majority of microbial genomic diversity remains unexplored. This is largely due to our inability to culture most microorganisms in isolation, which is a prerequisite for traditional genome sequencing. Single-cell sequencing has allowed researchers to circumvent this limitation.

View Article and Find Full Text PDF