Publications by authors named "Ashley Wozniak"

Passive immunization with polyclonal hyper immunoglobulin (HIG) therapy represents a proven strategy by transferring immunoglobulins to patients to confer immediate protection against a range of pathogens including infectious agents and toxins. Distinct from active immunization, the protection is passive and the immunoglobulins will clear from the system; therefore, administration of an effective dose must be maintained for prophylaxis or treatment until a natural adaptive immune response is mounted or the pathogen/agent is cleared. The current review provides an overview of this technology, key considerations to address different pathogens, and suggested improvements.

View Article and Find Full Text PDF

The technique of single muscle-fiber cultures has already proven valuable in extending knowledge of myogenesis, stem cell heterogeneity, the stem cell niche in skeletal muscle, and satellite cell activation. This report reviews the background of the model and applications, and details the procedures of muscle dissection, fiber digestion and isolation, cleaning the fiber preparation, plating fibers, and extensions of the technique for studying activation from stable quiescence of satellite cells, mRNA expression by in situ hybridization and regulation of satellite cell activation in zebrafish muscle by nitric oxide, hepatocyte growth factor.

View Article and Find Full Text PDF

Satellite cells (quiescent precursors in normal adult skeletal muscle) are activated for growth and regeneration. Signaling by nitric oxide (NO) and hepatocyte growth factor (HGF) during activation has not been examined in a model that can distinguish quiescent from activated satellite cells. We tested the hypothesis that NO and HGF are required to regulate activation using the single-fiber culture model.

View Article and Find Full Text PDF

The activity of satellite cells during myogenesis, development, or skeletal muscle regeneration is strongly modelled using cultures of single muscle fibers. However, there are variations in reported features of gene or protein expression as examined with single-fiber cultures. Here, we examined the potential differences in activation of satellite cells on normal mouse muscle fibers produced during a standard isolation protocol, with or without agitation during collagenase digestion.

View Article and Find Full Text PDF

Activation of skeletal muscle satellite cells, defined as entry to the cell cycle from a quiescent state, is essential for normal growth and for regeneration of tissue damaged by injury or disease. This review focuses on early events of activation by signaling through nitric oxide and hepatocyte growth factor, and by mechanical stimuli. The impact of various model systems used to study activation and the regulation of satellite-cell quiescence are placed in the context of activation events in other tissues, concluding with a speculative model of alternate pathways signaling satellite-cell activation.

View Article and Find Full Text PDF

Knowledge of the events underlying satellite cell activation and the counterpart maintenance of quiescence is essential for planning therapies that will promote the growth and regeneration of skeletal muscle in healthy, disease and aging. By modeling those events of satellite cell activation in studies of single muscle fibers or muscles in culture, the roles of mechanical stretching and nitric oxide are becoming understood. Recent studies demonstrated that stretch-induced activation is very rapid and exhibits some features of satellite cell heterogeneity.

View Article and Find Full Text PDF

Single-fiber cultures can be used to model satellite cell activation in vivo. Although technical deficiencies previously prevented study of stretch-induced events, here we describe a method developed to study satellite cell gene expression by in situ hybridization (ISH) using protocol modifications for fiber adhesion and fixation. The hypothesis that mechanical stretching activates satellite cells was tested.

View Article and Find Full Text PDF