We present the genomes of nine cultured microbes isolated from two freshwater sites in Wellesley, MA. The dataset is useful for exploring genomic diversity among freshwater taxa, including , , , and .
View Article and Find Full Text PDFIn the ocean, free-living bacteria exist in a dilute world where direct physical interactions between cells are relatively rare. How then do they exchange genetic information via horizontal gene transfer (HGT)? Lücking et al. have explored the world of marine 'protected extracellular DNA' (peDNA), and find that extracellular vesicles (EVs) are likely to play an important role.
View Article and Find Full Text PDFStaphylococcus aureus is an opportunistic pathogen. Over- and improper-use of pharmaceuticals against S. aureus has led to the development of antibiotic resistance, including methicillin-resistant S.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
November 2017
Aims: (i) to evaluate a novel hybrid near-infrared fluorescence-intravascular ultrasound (NIRF-IVUS) system in coronary and peripheral swine arteries in vivo; (ii) to assess simultaneous quantitative biological and morphological aspects of arterial disease.
Methods And Results: Two 9F/15MHz peripheral and 4.5F/40MHz coronary near-infrared fluorescence (NIRF)-IVUS catheters were engineered to enable accurate co-registrtation of biological and morphological readings simultaneously in vivo.
In grating-based x-ray phase sensitive imaging, dark-field contrast refers to the extinction of the interference fringes due to small-angle scattering. For configurations where the sample is placed before the beamsplitter grating, the dark-field contrast has been quantified with theoretical wave propagation models. Yet when the grating is placed before the sample, the dark-field contrast has only been modeled in the geometric optics regime.
View Article and Find Full Text PDFPurpose: The purpose of this study is to develop a single-shot version of the grating-based phase contrast x-ray imaging method and demonstrate its capability of in vivo animal imaging. Here, the authors describe the principle and experimental results. They show the source of artifacts in the phase contrast signal and optimal designs that minimize them.
View Article and Find Full Text PDFIron oxide nano-particles have very different x-ray diffraction properties from tissue. They can be clearly visualized against suppressed tissue background in a single-shot x-ray diffraction imaging technique. This technique is able to acquire both diffraction and absorption images from a single grating-modulated projection image through analysis in the spatial frequency domain.
View Article and Find Full Text PDFWe describe an x-ray differential phase-contrast imaging method based on two-dimensional transmission gratings that are directly resolved by an x-ray camera. X-ray refraction and diffraction in the sample lead to variations of the positions and amplitudes of the grating fringes on the camera. These effects can be quantified through spatial harmonic analysis.
View Article and Find Full Text PDFThe purpose of this study is to develop and evaluate a displacement-encoded pulse sequence for simultaneous perfusion and strain imaging. Displacement-encoded images in two to three myocardial slices were repeatedly acquired using a single-shot pulse sequence for 3 to 4 min, which covers a bolus infusion of Gadolinium contrast. The magnitudes of the images were T(1) weighted and provided quantitative measures of perfusion, while the phase maps yielded strain measurements.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are a promising cell source for cartilage tissue engineering given their chondrogenic potential. This potential has yet to be fully realized, as the mechanical properties of MSC-based constructs are lower than those of chondrocyte-based constructs cultured identically. The aim of this study was to better understand the transcriptional underpinnings of this functional limitation.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are an attractive cell source for cartilage tissue engineering and regenerative medicine. However, the use of these cells has been limited by their reduced ability to form functional tissue compared to chondrocytes when placed in three-dimensional culture systems. To optimize MSC functional chondrogenesis, we examined the effects of increasing seeding density and transient application of transforming growth factor beta 3 (TGF-beta3), two factors previously shown to improve growth of chondrocyte-based constructs.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine and the study of skeletal development. Despite considerable interest in MSC chondrogenesis, the signal transduction and molecular mechanisms underlying this process remain largely undefined. To explore the signaling topology regulating chondrogenic differentiation, as well as to discover novel modulators, we developed and validated a high-throughput screening (HTS) assay for MSC chondrogenesis.
View Article and Find Full Text PDF