Publications by authors named "Ashley S Phillips"

The drive toward more sensitive LC-MS assays has resulted in long, complex methods. We assessed next-generation trypsins to identify a suitable candidate to integrate into protein LC-MS method development strategies, to simplify methods and increase throughput. The performance of commercially available next-generation trypsins was assessed based on the digestion of protein standards in buffer and complex matrix by LC-high-resolution MS.

View Article and Find Full Text PDF

Here we provide data describing the time-course of blood-glucose and fluid-intake profiles of diabetic hemizygous human-amylin (hA) transgenic mice orally treated with rutin, and matched control mice treated with water. We employed "parametric change-point regression analysis" for investigation of differences in time-course profiles between the control and rutin-treatment groups to extract, for each animal, baseline levels of blood glucose and fluid-intake, the change-point time at which blood glucose (diabetes-onset) and fluid-intake (polydipsia-onset) accelerated away from baseline, and the rate of this acceleration. The parametric change-point regression approach applied here allowed a much more accurate determination of the exact time of onset of diabetes than do the standard diagnostic criteria.

View Article and Find Full Text PDF

Pancreatic islet β-cells secrete the hormones insulin and amylin, and defective β-cell function plays a central role in the pathogenesis of type-2 diabetes (T2D). Human amylin (hA, also termed hIAPP) misfolds and forms amyloid aggregates whereas orthologous mouse amylin does neither. Furthermore, hA elicits apoptosis in cultured β-cells and β-cell death in ex-vivo islets.

View Article and Find Full Text PDF

In recent years both mass spectrometry (MS) and ion mobility mass spectrometry (IM-MS) have been developed as techniques with which to study proteins that lack a fixed tertiary structure but may contain regions that form secondary structure elements transiently, namely intrinsically disordered proteins (IDPs). IM-MS is a suitable method for the study of IDPs which provides an insight to conformations that are present in solution, potentially enabling the analysis of lowly populated structural forms. Here, we describe the IM-MS data of two IDPs; α-Synuclein (α-Syn) which is implicated in Parkinson's disease, and Apolipoprotein C-II (ApoC-II) which is involved in cardiovascular diseases.

View Article and Find Full Text PDF

The aggregation and deposition of α-synuclein in Lewy bodies is associated with the progression of Parkinson's disease. Here, Mass Spectrometry (MS) is used in combination with Ion Mobility (IM), chemical crosslinking and Electron Capture Dissociation (ECD) to probe transient structural elements of α-synuclein and its oligomers. Each of these reveals different aspects of the conformational heterogeneity of this 14 kDa protein.

View Article and Find Full Text PDF