Head and neck squamous cell carcinoma (HNSCC) includes a subset of cancers driven by human papillomavirus (HPV). Here we use single-cell RNA-seq to profile both HPV-positive and HPV-negative oropharyngeal tumors, uncovering a high level of cellular diversity within and between tumors. First, we detect diverse chromosomal aberrations within individual tumors, suggesting genomic instability and enabling the identification of malignant cells even at pathologically negative margins.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signaling, cell stress and epithelial-to-mesenchymal transition.
View Article and Find Full Text PDFAggregates of the RNA-binding protein TDP-43 (TAR DNA-binding protein) are a hallmark of the overlapping neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The process of TDP-43 aggregation remains poorly understood, and whether it includes formation of intermediate complexes is unknown. Here, we analyzed aggregates derived from purified TDP-43 under semidenaturing conditions, identifying distinct oligomeric complexes at the initial time points before the formation of large aggregates.
View Article and Find Full Text PDFTDP-43 is an RNA-binding protein active in splicing that concentrates into membraneless ribonucleoprotein granules and forms aggregates in amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Although best known for its predominantly disordered C-terminal domain which mediates ALS inclusions, TDP-43 has a globular N-terminal domain (NTD). Here, we show that TDP-43 NTD assembles into head-to-tail linear chains and that phosphomimetic substitution at S48 disrupts TDP-43 polymeric assembly, discourages liquid-liquid phase separation (LLPS) , fluidizes liquid-liquid phase separated nuclear TDP-43 reporter constructs in cells, and disrupts RNA splicing activity.
View Article and Find Full Text PDFTAR DNA-binding protein (TDP-43) is a highly conserved and essential DNA- and RNA-binding protein that controls gene expression through RNA processing, in particular, regulation of splicing. Intracellular aggregation of TDP-43 is a hallmark of amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. This TDP-43 pathology is also present in other types of neurodegeneration including Alzheimer's disease.
View Article and Find Full Text PDFFollicular thyroid cancer (FTC) is the second most common type of thyroid cancers. In order to develop more effective personalized therapies, it is necessary to thoroughly evaluate patient-derived cell lines in in vivo preclinical models before using them to test new, targeted therapies. This study evaluates the tumorigenic and metastatic potential of a panel of three human FTC cell lines (WRO, FTC-238, and TT1609-CO2) with defined genetic mutations in two in vivo murine models: an orthotopic thyroid cancer model to study tumor progression and a tail vein injection model to study metastasis.
View Article and Find Full Text PDFWe developed Split DamID (SpDamID), a protein complementation version of DamID, to mark genomic DNA bound in vivo by interacting or juxtapositioned transcription factors. Inactive halves of DAM (DNA adenine methyltransferase) were fused to protein pairs to be queried. Either direct interaction between proteins or proximity enabled DAM reconstitution and methylation of adenine in GATC.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
February 2015
Context: Anaplastic thyroid carcinoma (ATC) is one of the most deadly human malignancies. It is 99% lethal, and patients have a median survival of only 6 months after diagnosis. Despite these grim statistics, the mechanism underlying the tumorigenic capability of ATC cells is unclear.
View Article and Find Full Text PDFBackground: We have previously demonstrated that thyrospheres derived from human anaplastic thyroid cancer (ATC) cell lines can reconstitute and sustain tumor growth in vivo. The aim of this study was to use luciferase-expressing thyrospheres to establish a clinically relevant mouse model of ATC that allows noninvasive and sensitive monitoring of tumor progression.
Methods: Two human ATC cell lines stably transfected with a firefly luciferase gene were used to generate thyrospheres under stem cell culture conditions.
Emerging evidence suggests cancer stem cells (CSCs) may initiate new tumors in anaplastic thyroid carcinoma (ATC), one of the most aggressive solid tumors in humans. However, the involvement of CSCs in human tumorigenesis has not been previously studied in authenticated ATC cell lines. Here we demonstrate a functional role of CSCs in four new validated human ATC cell lines (THJ-11T, THJ-16T, THJ-21T and THJ-29T).
View Article and Find Full Text PDFSeveral types of animal models of human thyroid carcinomas have been established, including subcutaneous xenograft and orthotopic implantation of cancer cells into immunodeficient mice. Subcutaneous xenograft models have been valuable for preclinical screening and evaluation of new therapeutic treatments. There are a number of advantages to using a subcutaneous model; 1) rapid, 2) reproducible, and 3) tumor establishment, growth, and response to therapeutic agents may be monitored by visual inspection.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2012
The identification of mutations in PTPN11 (encoding the protein tyrosine phosphatase Shp2) in families with congenital heart disease has facilitated mechanistic studies of various cardiovascular defects. However, the roles of normal and mutant Shp2 in the developing heart are still poorly understood. Furthermore, it remains unclear how Shp2 loss-of-function (LOF) mutations cause LEOPARD Syndrome (also termed Noonan Syndrome with multiple lentigines), which is characterized by congenital heart defects such as pulmonary valve stenosis and hypertrophic cardiomyopathy (HCM).
View Article and Find Full Text PDF