Administration of long-acting injectable suspensions is an increasingly common approach to increasing patient compliance and improving therapeutic efficacy through less frequent dosing. While several long-acting suspensions have recently been marketed, parameters modulating drug absorption from suspension-based formulations are not well understood. Further, methods for predicting clinical pharmacokinetic data from preclinical studies are not well established.
View Article and Find Full Text PDF: Drug eluting implants offer patient convenience and improved compliance through less frequent dosing, eliminating repeated, painful injections and providing localized, site specific delivery with applications in contraception, ophthalmology, and oncology.: This review provides an overview of available implant products, design approaches, biodegradable and non-biodegradable polymeric materials, and fabrication techniques with a focus on commercial applications and industrial drug product development. Developing trends in the field, including expanded availability of suitable excipients, development of novel materials, scaled down manufacturing process, and a wider understanding of the implant development process are discussed and point to opportunities for differentiated drug eluting implant products.
View Article and Find Full Text PDFPurpose: Microneedle patches are arrays of tiny needles that painlessly pierce the skin to deliver medication into the body. Biocompatible microneedles are usually fabricated via molding of a master structure. Microfabrication techniques used for fabricating these master structures are costly, time intensive, and require extensive expertise to control the structure's geometry of the structure, despite evidence that microneedle geometry is a key design parameter.
View Article and Find Full Text PDFMicroneedles, arrays of micron-sized needles that painlessly puncture the skin, enable transdermal delivery of medications that are difficult to deliver using more traditional routes. Many important design parameters, such as microneedle size, shape, spacing, and composition, are known to influence efficacy, but are notoriously difficult to alter due to the complex nature of microfabrication techniques. Herein, we utilize a novel additive manufacturing ("3D printing") technique called Continuous Liquid Interface Production (CLIP) to rapidly prototype sharp microneedles with tuneable geometries (size, shape, aspect ratio, spacing).
View Article and Find Full Text PDFAdditive manufacturing processes such as 3D printing use time-consuming, stepwise layer-by-layer approaches to object fabrication. We demonstrate the continuous generation of monolithic polymeric parts up to tens of centimeters in size with feature resolution below 100 micrometers. Continuous liquid interface production is achieved with an oxygen-permeable window below the ultraviolet image projection plane, which creates a "dead zone" (persistent liquid interface) where photopolymerization is inhibited between the window and the polymerizing part.
View Article and Find Full Text PDF