Scaling up superconducting quantum circuits based on transmon qubits necessitates substantial enhancements in qubit coherence time. Over recent years, tantalum (Ta) has emerged as a promising candidate for transmon qubits, surpassing conventional counterparts in terms of coherence time. However, amorphous surface Ta oxide layer may introduce dielectric loss, ultimately placing a limit on the coherence time.
View Article and Find Full Text PDFPhotoanodes used in a water-splitting photoelectrochemical cell are almost always paired with an oxygen evolution catalyst (OEC) to efficiently utilize photon-generated holes for water oxidation because the surfaces of photoanodes are typically not catalytic for the water oxidation reaction. Suppressing electron-hole recombination at the photoanode/OEC interface is critical for the OEC to maximally utilize the holes reaching the interface for water oxidation. In order to explicitly demonstrate and investigate how the detailed features of the photoanode/OEC interface affect interfacial charge transfer and photocurrent generation for water oxidation, we prepared two BiVO(010)/FeOOH photoanodes with different Bi:V ratios at the outermost layer of the BiVO interface (close to stoichiometric vs Bi-rich) while keeping all other factors in the bulk BiVO and FeOOH layers identical.
View Article and Find Full Text PDFOver the past decades, superconducting qubits have emerged as one of the leading hardware platforms for realizing a quantum processor. Consequently, researchers have made significant effort to understand the loss channels that limit the coherence times of superconducting qubits. A major source of loss has been attributed to two level systems that are present at the material interfaces.
View Article and Find Full Text PDFThe Mars-van Krevelen mechanism is the foundation for oxide-catalyzed oxidation reactions and relies on spatiotemporally separated redox steps. Herein, we demonstrate the tunability of this separation with peroxide species formed by excessively adsorbed oxygen, thereby modifying the catalytic activity and selectivity of the oxide. Using CuO as an example, we show that a surface layer of peroxide species acts as a promotor to significantly enhance CuO reducibility in favor of H oxidation but conversely as an inhibitor to suppress CuO reduction against CO oxidation.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) offer an intrinsically porous and chemically tunable platform for gas adsorption, separation, and catalysis. We investigate thin film derivatives of the well-studied Zr-O based MOF powders to understand their adsorption properties and reactivity with their adaption to thin films, involving diverse functionality with the incorporation of different linker groups and the inclusion of embedded metal nanoparticles: UiO-66, UiO-66-NH, and Pt@UiO-66-NH. Using transflectance IR spectroscopy, we determine the active sites in each film upon consideration of the acid-base properties of the adsorption sites and guest species, and perform metal-based catalysis with CO oxidation of a Pt@UiO-66-NHfilm.
View Article and Find Full Text PDFThe surface chemistry of the initial growth during the first or first few precursor cycles in atomic layer deposition is decisive for how the growth proceeds later on and thus for the quality of the thin films grown. Yet, although general schemes of the surface chemistry of atomic layer deposition have been developed for many processes and precursors, in many cases, knowledge of this surface chemistry remains far from complete. For the particular case of HfO atomic layer deposition on a SiO surface from an alkylamido-hafnium precursor and water, we address this lack by carrying out an atomic layer deposition experiment during the first cycle of atomic layer deposition.
View Article and Find Full Text PDFThe electrochemical nitrogen (N ) reduction reaction (N RR) under mild conditions is a promising and environmentally friendly alternative to the traditional Haber-Bosch process with high energy consumption and greenhouse emission for the synthesis of ammonia (NH ), but high-yielding production is rendered challenging by the strong nonpolar N≡N bond in N molecules, which hinders their dissociation or activation. In this study, disordered Au nanoclusters anchored on two-dimensional ultrathin Ti C T MXene nanosheets are explored as highly active and selective electrocatalysts for efficient N -to-NH conversion, exhibiting exceptional activity with an NH yield rate of 88.3±1.
View Article and Find Full Text PDFACS Sustain Chem Eng
October 2021
The COVID-19 pandemic resulted in imminent shortages of personal protective equipment such as face masks. To address the shortage, new sterilization or decontamination procedures for masks are quickly being developed and employed. Dry heat and steam sterilization processes are easily scalable and allow treatment of large sample sizes, thus potentially presenting fast and efficient decontamination routes, which could significantly ease the rapidly increasing need for protective masks globally during a pandemic like COVID-19.
View Article and Find Full Text PDFAtomically dispersed single-atom catalysts have the potential to bridge heterogeneous and homogeneous catalysis. Dozens of single-atom catalysts have been developed, and they exhibit notable catalytic activity and selectivity that are not achievable on metal surfaces. Although promising, there is limited knowledge about the boundaries for the monometallic single-atom phase space, not to mention multimetallic phase spaces.
View Article and Find Full Text PDFSilicon (Si) is a promising high-capacity material for lithium-ion batteries; however, its limited reversibility hinders commercial adoption. Approaches such as particle and crystallite size reduction, introduction of conductive carbon, and use of different electrolyte solvents have been explored to overcome these electrochemical limitations. Herein, operando isothermal microcalorimetry (IMC) is used to probe the influence of silicon particle size, electrode composition, and electrolyte additives fluoroethylene carbonate and vinylene carbonate on the heat flow during silicon lithiation.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2022
Confined nanosized spaces at the interface between a metal and a seemingly inert material, such as a silicate, have recently been shown to influence the chemistry at the metal surface. In prior work, we observed that a bilayer (BL) silica on Ru(0001) can change the reaction pathway of the water formation reaction (WFR) near room temperature when compared to the bare metal. In this work, we looked at the effect of doping the silicate with Al, resulting in a stoichiometry of AlSiO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2021
Use of masks is a primary tool to prevent the spread of the novel COVID-19 virus resulting from unintentional close contact with infected individuals. However, detailed characterization of the chemical properties and physical structure of common mask materials is lacking in the current literature. In this study, a series of commercial masks and potential mask materials, including 3M Particulate Respirator 8210 N95, a material provided by Oak Ridge National Laboratory Carbon Fiber Technology Facility (ORNL/CFTF), and a Filti Face Mask Material, were characterized by a suite of techniques, including scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFXenon (Xe) is a valuable and scarce noble gas used in various applications, including lighting, electronics, and anesthetics, among many others. It is also a volatile byproduct of the nuclear fission of uranium. A novel material architecture consisting of silicate nanocages in contact with a metal surface and an approach for trapping single Xe atoms in these cages is presented.
View Article and Find Full Text PDFDianionic hyponitrite (N O ) is often proposed, based on model complexes, as the key intermediate in reductive coupling of nitric oxide to nitrous oxide at the bimetallic active sites of heme-copper oxidases and nitric oxide reductases. In this work, we examine the gas-solid reaction of nitric oxide with the metal-organic framework Cu -ZrTpmC* with a suite of in situ spectroscopies and density functional theory simulations, and identify an unusual chelating N O intermediate. These results highlight the advantage provided by site-isolation in metal-organic frameworks (MOFs) for studying important reaction intermediates, and provide a mechanistic scenario compatible with the proposed one-electron couple in these enzymes.
View Article and Find Full Text PDFInterfacially confined microenvironments have recently gained attention in catalysis, as they can be used to modulate reaction chemistry. The emergence of a 2D nanospace at the interface between a 2D material and its support can promote varying kinetic and energetic schemes based on molecular level confinement effects imposed in this reduced volume. We report on the use of a 2D oxide cover, bilayer silica, on catalytically active Pd(111) undergoing the CO oxidation reaction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2019
Silicon offers high theoretical capacity as a negative electrode material for lithium-ion batteries; however, high irreversible capacity upon initial cycling and poor cycle life have limited commercial adoption. Herein, we report an operando isothermal microcalorimetry (IMC) study of a model system containing lithium metal and silicon composite film electrodes during the first two cycles of (de)lithiation. The total heat flow data are analyzed in terms of polarization, entropic, and parasitic heat flow contributions to quantify and determine the onset of parasitic reactions.
View Article and Find Full Text PDFMolybdenum(VI) oxide (MoO) is used in a number of technical processes such as gas filtration and heterogeneous catalysis. In these applications, the adsorption and dissociation of water on the surface can influence the chemistry of MoO and thus the course of heterogeneous reactions. We use ambient pressure X-ray photoelectron spectroscopy to study the interaction of water with a stoichiometric MoO surface and a MoO surface that features oxygen defects and hydroxyl groups.
View Article and Find Full Text PDFAtomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy.
View Article and Find Full Text PDFOrganophosphonates range in their toxicity and are used as pesticides, herbicides, and chemical warfare agents (CWAs). Few laboratories are equipped to handle the most toxic molecules, thus simulants such as dimethyl methylphosphonate (DMMP), are used as a first step in studying adsorption and reactivity on materials. Benchmarked by combined experimental and theoretical studies of simulants, calculations offer an opportunity to understand how molecular interactions with a surface changes upon using a CWA.
View Article and Find Full Text PDFWe use ambient-pressure X-ray photoelectron spectroscopy (APXPS) to study chemical changes, including hydroxylation and water adsorption, at copper oxide surfaces from ultrahigh vacuum to ambient relative humidities of ∼5%. Polycrystalline CuO and CuO surfaces were prepared by selective oxidation of metallic copper foils. For both oxides, hydroxylation occurs readily, even at high-vacuum conditions.
View Article and Find Full Text PDFUnderstanding the stability of chemical interactions at the polymer/metal oxide interface under humid conditions is vital to understand the long-term durability of hybrid systems. Therefore, the interface of ultrathin PMMA films on native aluminum oxide, deposited by reactive adsorption, was studied. The characterization of the interface of the coated substrates was performed using ambient pressure X-ray photoelectron spectroscopy (APXPS), Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann) and time-of-flight secondary ion mass spectrometry (ToF-SIMS).
View Article and Find Full Text PDFProbing initial interactions at the interface of hybrid systems under humid conditions has the potential to reveal the local chemical environment at solid/solid interfaces under real-world, technologically relevant conditions. Here, we show that ambient pressure X-ray photoelectron spectroscopy (APXPS) with a conventional X-ray source can be used to study the effects of water exposure on the interaction of a nanometer-thin polyacrylic acid (PAA) layer with a native aluminum oxide surface. The formation of a carboxylate ionic bond at the interface is characterized both with APXPS and in situ attenuated total reflectance Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann).
View Article and Find Full Text PDFSPECIES is an undulator-based soft X-ray beamline that replaced the old I511 beamline at the MAX II storage ring. SPECIES is aimed at high-resolution ambient-pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine-structure (NEXAFS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) experiments. The beamline has two branches that use a common elliptically polarizing undulator and monochromator.
View Article and Find Full Text PDFOver the past several decades, ambient pressure x-ray photoelectron spectroscopy (APXPS) has emerged as a powerful technique for in situ and operando investigations of chemical reactions under relevant ambient atmospheres far from ultra-high vacuum conditions. This review focuses on exemplary cases of APXPS experiments, giving special consideration to experimental techniques, challenges, and limitations specific to distinct condensed matter interfaces. We discuss APXPS experiments on solid/vapor interfaces, including the special case of 2D films of graphene and hexagonal boron nitride on metal substrates with intercalated gas molecules, liquid/vapor interfaces, and liquid/solid interfaces, which are a relatively new class of interfaces being probed by APXPS.
View Article and Find Full Text PDF