Publications by authors named "Ashley P Barry"

Epstein-Barr virus (EBV) infects over 95% of adults worldwide. Given its connection to various cancers and autoimmune disorders, it is important to understand the mechanisms by which infection with EBV can lead to these diseases. In this study, we describe an unusual spontaneous lytic phenotype in EBV strains isolated from Kenyan endemic Burkitt lymphoma patients.

View Article and Find Full Text PDF

Chromatin accessibility fundamentally governs gene expression and biological response programs that can be manipulated by pathogens. Here we capture dynamic chromatin landscapes of individual B cells during Epstein-Barr virus (EBV) infection. EBV cells that exhibit arrest via antiviral sensing and proliferation-linked DNA damage experience global accessibility reduction.

View Article and Find Full Text PDF

Most drugs used to treat viral disease target a virus-coded product. They inhibit a single virus or virus family, and the pathogen can readily evolve resistance. Host-targeted antivirals can overcome these limitations.

View Article and Find Full Text PDF

Epstein-Barr virus infection of B lymphocytes elicits diverse host responses via well-adapted transcriptional control dynamics. Consequently, this host-pathogen interaction provides a powerful system to explore fundamental processes leading to consensus fate decisions. Here, we use single-cell transcriptomics to construct a genome-wide multistate model of B cell fates upon EBV infection.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that typically causes asymptomatic infection but can promote B lymphoid tumors in the immune suppressed. In vitro, EBV infection of primary B cells stimulates glycolysis during immortalization into lymphoblastoid cell lines (LCLs). Lactate export during glycolysis is crucial for continued proliferation of many cancer cells-part of a phenomenon known as the "Warburg effect"- and is mediated by monocarboxylate transporters (MCTs).

View Article and Find Full Text PDF

Recent advances in chemotherapy treatments are increasingly targeted therapies, with the drug conjugated to an antibody able to deliver it directly to the tumor. As high-affinity chemical ligands that are much smaller in size, aptamers are ideal for this type of drug targeting. Aptamer-highly toxic drug conjugates (ApTDCs) based on the E3 aptamer, selected on prostate cancer cells, target and inhibit prostate tumor growth in vivo.

View Article and Find Full Text PDF

Therapies that can eliminate both local and metastatic prostate tumor lesions while sparing normal organ tissue are desperately needed. With the goal of developing an improved drug-targeting strategy, we turned to a new class of targeted anticancer therapeutics: aptamers conjugated to highly toxic chemotherapeutics. Cell selection for aptamers with prostate cancer specificity yielded the E3 aptamer, which internalizes into prostate cancer cells without targeting normal prostate cells.

View Article and Find Full Text PDF

Latent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFκB and is critical for survival of EBV-immortalized B cells.

View Article and Find Full Text PDF

Pathogenic HIV infections of humans and simian immunodeficiency virus (SIV) infections of rhesus macaques are characterized by generalized immune activation and progressive CD4(+) T cell depletion. In contrast, natural reservoir hosts for SIV, such as sooty mangabeys, do not progress to AIDS and show a lack of aberrant immune activation and preserved CD4(+) T cell populations, despite high levels of SIV replication. Here we show that sooty mangabeys have substantially reduced levels of innate immune system activation in vivo during acute and chronic SIV infection and that sooty mangabey plasmacytoid dendritic cells (pDCs) produce markedly less interferon-alpha in response to SIV and other Toll-like receptor 7 and 9 ligands ex vivo.

View Article and Find Full Text PDF

Peripheral blood CD4+ T cell counts are a key measure for assessing disease progression and need for antiretroviral therapy in HIV-infected patients. More recently, studies have demonstrated a dramatic depletion of mucosal CD4+ T cells during acute infection that is maintained during chronic pathogenic HIV as well as SIV infection. A different clinical disease course is observed during the infection of natural hosts of SIV infection, such as sooty mangabeys (Cercocebus atys), which typically do not progress to AIDS.

View Article and Find Full Text PDF

SIV infection of sooty mangabeys (SMs), a natural host species, does not cause AIDS despite high-level virus replication. In contrast, SIV infection of nonnatural hosts such as rhesus macaques (RMs) induces an AIDS-like disease. The depletion of CD8+ T cells during SIV infection of RMs results in marked increases in plasma viremia, suggesting a key role for CD8+ T cells in controlling levels of SIV replication.

View Article and Find Full Text PDF

Sooty mangabeys, the natural host of simian immunodeficiency virus (SIVsm), generally avoid progressive depletion of CD4+ T cells and opportunistic infections associated with infection of humans (HIV) and macaques (SIVmac). The means by which the SIVsm-infected mangabeys maintain CD4+ T-cell levels despite high rates of viral replication is unknown. One cytokine that has a key role in the regulation of T-cell levels is interleukin-7 (IL-7).

View Article and Find Full Text PDF

Given the dual role of CD4 T cells as both immune effectors and targets for HIV infection, the balance of CD4 versus CD8 T cell-mediated responses induced by candidate AIDS vaccines may be critical in determining postvaccination infection outcomes. An attenuated recombinant varicella-zoster virus vaccine expressing the simian immunodeficiency virus (SIV) envelope (Env) elicited nonneutralizing Env-binding antibodies and little if any cytotoxic T lymphocyte responses in rhesus macaques (Macaca mulatta). After challenge with SIV, Env vaccinees manifested increased levels of SIV replication, more rapid CD4 depletion, and accelerated progression to AIDS compared with controls.

View Article and Find Full Text PDF

In vivo blockade of CD28 and CD40 T cell costimulation pathways during acute simian immunodeficiency virus (SIV) infection of rhesus macaques was performed to assess the relative contributions of CD4+ T cells, CD8+ T cells, and Ab responses in modulating SIV replication and disease progression. Transient administration of CTLA4-Ig and anti-CD40L mAb to SIV-infected rhesus macaques resulted in dramatic inhibition of the generation of both SIV-specific cellular and humoral immune responses. Acute levels of proliferating CD8+ T cells were associated with early control of SIV viremia but did not predict ensuing set point viremia or survival.

View Article and Find Full Text PDF