Proteus mirabilis is a leading uropathogen of catheter-associated urinary tract infections (CAUTIs), which are among the most common health care-associated infections worldwide. A key factor that contributes to P. mirabilis pathogenesis and persistence during CAUTI is the formation of catheter biofilms, which provide increased resistance to antibiotic treatment and host defense mechanisms.
View Article and Find Full Text PDFThe vast majority of research pertaining to urinary tract infection has focused on a single pathogen in isolation, and predominantly However, polymicrobial urine colonization and infection are prevalent in several patient populations, including individuals with urinary catheters. The progression from asymptomatic colonization to symptomatic infection and severe disease is likely shaped by interactions between traditional pathogens as well as constituents of the normal urinary microbiota. Recent studies have begun to experimentally dissect the contribution of polymicrobial interactions to disease outcomes in the urinary tract, including their role in development of antimicrobial-resistant biofilm communities, modulating the innate immune response, tissue damage, and sepsis.
View Article and Find Full Text PDFThe Gram-negative bacterium Proteus mirabilis is a common cause of catheter-associated urinary tract infections (CAUTI), which can progress to secondary bacteremia. While numerous studies have investigated experimental infection with P. mirabilis in the urinary tract, little is known about pathogenesis in the bloodstream.
View Article and Find Full Text PDFis a common cause of catheter-associated urinary tract infection (CAUTI) and secondary bacteremia, which are frequently polymicrobial. We previously utilized transposon insertion-site sequencing (Tn-Seq) to identify novel fitness factors for colonization of the catheterized urinary tract during single-species and polymicrobial infection, revealing numerous metabolic pathways that may contribute to fitness regardless of the presence of other cocolonizing organisms. One such "core" fitness factor was d-serine utilization.
View Article and Find Full Text PDF