Genetic analysis in model systems using bioinformatic approaches provides a rich context for a concrete and conceptual understanding of gene structure and function. With the intent to engage students in research and explore disease biology utilizing the nematode model, we developed a semester-long course-based undergraduate research experience (CURE) in a hybrid (online/in-person) learning environment-the gene-editing and evolutionary nematode exploration CURE (GENE-CURE). Using a combination of bioinformatic and molecular genetic tools, students performed structure-function analysis of disease-associated variants of uncertain significance (VUS) in human orthologs.
View Article and Find Full Text PDFAging is accompanied by increased susceptibility to infections including with viral pathogens resulting in higher morbidity and mortality among the elderly. Significant changes in host metabolism can take place following virus infection. Efficient immune responses are energetically costly, and viruses divert host molecular resources to promote their own replication.
View Article and Find Full Text PDFCourse-based undergraduate research experiences (CUREs) engage students in authentic research experiences in a course format and can sometimes result in the publication of that research. However, little is known about student-author perceptions of CURE publications. In this study, we examined how students perceive they benefit from authoring a CURE publication and what they believe is required for authorship of a manuscript in a peer-reviewed journal.
View Article and Find Full Text PDFThe development of gene editing technologies, especially the CRISPR-Cas9 system, has been pivotal for understanding the functional role of proteins. Rapid and efficient genotyping methods are necessary to screen for generated mutations and streamline the isolation of homozygotes. CRISPR-Cas9 system targeting a single site in the gene typically results in small indels.
View Article and Find Full Text PDFThe key negative regulatory gene of the RAS pathway, , is mutated or deleted in numerous cancer types and is associated with increased cancer risk and drug resistance. Even though women with neurofibromatosis (germline mutations) have a substantially increased breast cancer risk at a young age and is commonly mutated in sporadic breast cancers, we have a limited understanding of the role of in breast cancer. We utilized CRISPR-Cas9 gene editing to create rat models to evaluate the effect of deficiency on tumorigenesis.
View Article and Find Full Text PDFNeurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.
View Article and Find Full Text PDFSalmonella bacteria may internalize into tomato pulp when warm tomatoes from the field are submerged into colder water. Several washing steps may follow the initial washing and packing of tomatoes at the packinghouses; the potential for internalization into tomatoes in subsequent washing steps when tomatoes have a cooler pulp temperature is unknown. Our objective was to evaluate Salmonella internalization into mature green and red tomatoes with ambient (21°C) and refrigeration (4°C) pulp temperatures when they were submerged into water at various temperature differentials, simulating repacking and fresh-cut operations.
View Article and Find Full Text PDFTyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation.
View Article and Find Full Text PDFRecently diverged species may form complexes of morphologically similar, yet genetically distinct lineages that occur in overlapping geographic ranges and niches. Using a multilocus sequencing approach we discovered that gummy stem blight of cucurbits is caused by three genetically distinct species: Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), Stagonosporopsis citrulli, and Stagonosporopsis caricae, which had previously been considered only a pathogen of papaya.
View Article and Find Full Text PDFExobasidium leaf and fruit spot of blueberry (Vaccinium section Cyanococcus) is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA. To determine whether this disease is caused by a new species of Exobasidium, we studied the morphology and phylogenetic relationship of the causal fungus compared with other members of the genus, including the type species E. vaccinii and other species that parasitize blueberry and cranberry (V.
View Article and Find Full Text PDF