Preclinical studies demonstrate that repeated, high-dose methamphetamine administrations rapidly decrease plasmalemmal dopamine uptake, which may contribute to aberrant dopamine accumulation, reactive species generation, and long-term dopaminergic deficits. The present study extends these findings by demonstrating a heretofore unreported, epitope-specific modification in the dopamine transporter caused by a methamphetamine regimen that induces these deficits. Specifically, repeated, high-dose methamphetamine injections (4 × 10 mg/kg/injection, 2-h intervals) rapidly decreased immunohistochemical detection of striatal dopamine transporter as assessed 1 h after the final methamphetamine exposure.
View Article and Find Full Text PDFMethamphetamine (METH) abuse results in long-term damage to the dopaminergic system, manifesting as decreases in dopamine (DA) tissue content, DA transporter binding, as well as tyrosine hydroxylase and vesicular monoamine transporter immunostaining. However, the exact cascade of events that ultimately result in this damage has not been clearly elucidated. One factor that has been heavily implicated in METH-induced DA terminal degeneration is the production of nitric oxide (NO).
View Article and Find Full Text PDFProduction of nitric oxide (NO) has been implicated in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. The source of this NO has not been clearly delineated, but recent evidence suggests that it arises from activation of neuronal nitric oxide synthase (nNOS), which is selectively expressed in a subpopulation of striatal interneurons. Our objective was to determine whether inhibiting activation of nNOS-containing interneurons in the striatum blocks METH-induced neurotoxicity.
View Article and Find Full Text PDFNitric oxide is implicated in methamphetamine (METH)-induced neurotoxicity; however, the source of the nitric oxide has not been identified. Previous work has also revealed that animals with partial dopamine loss induced by a neurotoxic regimen of methamphetamine fail to exhibit further decreases in striatal dopamine when re-exposed to methamphetamine 7-30 days later. The current study examined nitric oxide synthase expression and activity and protein nitration in striata of animals administered saline or neurotoxic regimens of methamphetamine at postnatal days 60 and/or 90, resulting in four treatment groups: Saline:Saline, METH:Saline, Saline:METH, and METH:METH.
View Article and Find Full Text PDFIncreasingly, research suggests a role for dopamine D1 receptors in the consolidation of extinction of both appetitive and aversive memories. However, a role for D1 receptors in extinction of memories involving drug reward has yet to be established. Here we show that post-retrieval, but not delayed, systemic administration of the D1 receptor antagonist SCH23390 results in prolonged extinction of cocaine conditioned place preference (CPP), suggesting a critical role for D1 receptors in the consolidation of extinction of cocaine-cue memories.
View Article and Find Full Text PDFExposure to drug-paired cues can trigger addicts to relapse into drug seeking. Although the molecular mechanisms underlying cue-elicited cocaine seeking are incompletely understood, the protein kinase extracellular signal-regulated kinase (ERK) is known to have an important role. Psychostimulants and their associated cues can activate ERK in medium spiny neurons of the nucleus accumbens core (AcbC).
View Article and Find Full Text PDFContexts and discrete cues associated with drug-taking are often responsible for relapse among addicts. Animal models have shown that interference with the reconsolidation of drug-cue memories can reduce seeking of drugs or drug-paired stimuli. One such model is conditioned place preference (CPP) in which an animal is trained to associate a particular environment with the rewarding effects of a drug.
View Article and Find Full Text PDF