Publications by authors named "Ashley Manzoor"

Purpose: There were two primary objectives of this study: (1) to determine whether treatment of a tumour site with systemically administered thermally sensitive liposomes and local hyperthermia (HT) for triggered release would have dual anti-tumour effect on the primary heated tumour as well as an unheated secondary tumour in a distant site, and (2) to determine the ability of non-invasive optical spectroscopy to predict treatment outcome. The optical end points studied included drug levels, metabolic markers flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide phosphate (NAD(P)H), and physiological markers (total haemoglobin (Hb) and Hb oxygen saturation) before and after treatment.

Materials And Methods: Mice were inoculated with SKOV3 human ovarian carcinoma in both hind legs.

View Article and Find Full Text PDF

Traditionally, the goal of nanoparticle-based chemotherapy has been to decrease normal tissue toxicity by improving drug specificity to tumors. The enhanced permeability and retention effect can permit passive accumulation into tumor interstitium. However, suboptimal delivery is achieved with most nanoparticles because of heterogeneities of vascular permeability, which limits nanoparticle penetration.

View Article and Find Full Text PDF

The purpose of this review is to summarise a literature survey on thermal thresholds for tissue damage. This review covers published literature for the consecutive years from 2002-2009. The first review on this subject was published in 2003.

View Article and Find Full Text PDF

The ability to noninvasively assess physiological changes in solid tumors is desired for its diagnostic and therapeutic potential. In this issue of JCI, Matsumoto and colleagues reveal their development and use of a novel imaging approach, combining pulsed electron paramagnetic resonance imaging (EPRI) with conventional MRI to image squamous cell carcinoma tumor-bearing mice (See the related article beginning on page 1965). This method provides coregistered images of oxygenation and blood volume/flow with the underlying anatomy and concentrations of metabolites such as lactate and choline.

View Article and Find Full Text PDF