Publications by authors named "Ashley Mahne"

Purpose: Determine the differential effect of a FcγR-binding, mIgG2a anti-GITR antibody in mouse tumor models, and characterize the tumor microenvironment for the frequency of GITR expression in T-cell subsets from seven different human solid tumors. For mouse experiments, wild-type C57BL/6 mice were subcutaneously injected with MC38 cells or B16 cells, and BALB/c mice were injected with CT26 cells. Mice were treated with the anti-mouse GITR agonist antibody 21B6, and tumor burden and survival were monitored.

View Article and Find Full Text PDF

No curative treatment options are available for advanced hepatocellular carcinoma (HCC). Anti-PD1 antibody therapy can induce tumor regression in 20% of advanced HCC patients, demonstrating that co-inhibitory immune checkpoint blockade has therapeutic potential for this type of cancer. However, whether agonistic targeting of co-stimulatory receptors might be able to stimulate anti-tumor immunity in HCC is as yet unknown.

View Article and Find Full Text PDF

In NOD mice, CD11c cells increase greatly with islet inflammation and contribute to autoimmune destruction of pancreatic β cells. In this study, we investigated their origin and mechanism of recruitment. CD11c cells in inflamed islets resembled classical dendritic cells based on their transcriptional profile.

View Article and Find Full Text PDF

Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise mechanism of action is obscure. Here, we addressed this issue using a Treg fate-mapping approach, which revealed that Treg loss was primarily due to cell depletion, with minimal evidence of Treg conversion to a non-Foxp3-expressing population.

View Article and Find Full Text PDF

Therapeutic regulatory T cells (Tregs) can reverse pre-established autoimmune pathology. In this study, using a mouse model of autoimmune diabetes, we aimed to determine the means by which therapeutic Tregs control islet inflammation. Islet Ag-specific Tregs infiltrated inflamed islets soon after infusion into prediabetic mice, which was quickly followed by a selective reduction of mRNA associated with effector T cells in the islets.

View Article and Find Full Text PDF

In type 1 diabetes, the pancreatic islets are an important site for therapeutic intervention because immune infiltration of the islets is well established at diagnosis. Therefore, understanding the events that underlie the continued progression of the autoimmune response and islet destruction is critical. Islet infiltration and destruction is an asynchronous process, making it important to analyze the disease process on a single islet basis.

View Article and Find Full Text PDF

Some human memory CD4(+) T cells have cytotoxic functions best understood in the context of viral infections; however, their possible role in pathologic processes is understudied. The novel discovery that mitogenic CD28 antibodies induced proliferation and expansion of Tregs offered therapeutic promise for autoimmune disorders. However, the failed TGN1412 trial forced reassessment of this concept.

View Article and Find Full Text PDF