Publications by authors named "Ashley L Tong"

In photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical reactions. While the energy transfer dynamics within individual antenna proteins have been extensively studied over the past decades, the dynamics between the proteins are poorly understood due to the heterogeneous organization of the network. Previously reported timescales averaged over such heterogeneity, obscuring individual interprotein energy transfer steps.

View Article and Find Full Text PDF

Photosynthesis is generally assumed to be initiated by a single photon from the Sun, which, as a weak light source, delivers at most a few tens of photons per nanometre squared per second within a chlorophyll absorption band. Yet much experimental and theoretical work over the past 40 years has explored the events during photosynthesis subsequent to absorption of light from intense, ultrashort laser pulses. Here, we use single photons to excite under ambient conditions the light-harvesting 2 (LH2) complex of the purple bacterium Rhodobacter sphaeroides, comprising B800 and B850 rings that contain 9 and 18 bacteriochlorophyll molecules, respectively.

View Article and Find Full Text PDF

Photosynthetic light harvesting can occur with a remarkable near-unity quantum efficiency. The B800-850 complex, also known as light-harvesting complex 2 (LH2), is the primary light-harvesting complex in purple bacteria and has been extensively studied as a model system. The bacteriochlorophylls of the B800-850 complex are organized into two concentric rings, known as the B800 and B850 rings.

View Article and Find Full Text PDF

Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs.

View Article and Find Full Text PDF