Publications by authors named "Ashley Kaiser"

The excellent intrinsic properties of aligned nanofibers, such as carbon nanotubes (CNTs), and their ability to be easily formed into multifunctional 3D architectures motivate their use for a variety of commercial applications, such as batteries, chemical sensors for environmental monitoring, and energy harvesting devices. While controlling nanofiber adhesion to the growth substrate is essential for bulk-scale manufacturing and device performance, experimental approaches and models to date have not addressed tuning the CNT array-substrate adhesion strength with thermal processing conditions. In this work, facile "one-pot" thermal postgrowth processing (at temperatures = 700-950 °C) is used to study CNT-substrate pull-off strength for millimeter-tall aligned CNT arrays.

View Article and Find Full Text PDF

The advantageous intrinsic and scale-dependent properties of aligned nanofibers (NFs) and their assembly into 3D architectures motivate their use as dry adhesives and shape-engineerable materials. While controlling NF-substrate adhesion is critical for scaled manufacturing and application-specific performance, current understanding of how this property evolves with processing conditions is limited. In this report, we introduce substrate adhesion predictive capabilities by using an exemplary array of NFs, aligned carbon nanotubes (CNTs), studied as a function of their processing.

View Article and Find Full Text PDF

Capillary-mediated densification is an inexpensive and versatile approach to tune the application-specific properties and packing morphology of bulk nanofiber (NF) arrays, such as aligned carbon nanotubes. While NF length governs elasto-capillary self-assembly, the geometry of cellular patterns formed by capillary densified NFs cannot be precisely predicted by existing theories. This originates from the recently quantified orders of magnitude lower than expected NF array effective axial elastic modulus (E), and here we show via parametric experimentation and modeling that E determines the width, area, and wall thickness of the resulting cellular pattern.

View Article and Find Full Text PDF

Ecological soil-screening levels (Eco-SSLs) were developed by the United States Environmental Protection Agency (USEPA) for the purposes of setting conservative soil screening values that can be used to eliminate the need for further ecological assessment for specific analytes at a given site. Ecological soil-screening levels for wildlife represent a simplified dietary exposure model solved in terms of soil concentrations to produce exposure equal to a no-observed-adverse-effect toxicity reference value (TRV). Sensitivity analyses were performed for 6 avian and mammalian model species, and 16 metals/metalloids for which Eco-SSLs have been developed.

View Article and Find Full Text PDF

Project TALENT is a US national longitudinal study of about 377,000 individuals born in 1942-1946, first assessed in 1960. Students in about 1,200 schools participated in a 2-day battery covering aptitudes, abilities, interests, and individual and family characteristics (Flanagan, 1962; www.projectTALENT.

View Article and Find Full Text PDF

The fungus Cryptococcus neoformans is an opportunistic human pathogen that causes a life-threatening meningoencephalitis by expression of virulence factors such as melanin, a black pigment produced by the cell wall-associated enzyme laccase. In previous studies (Heung, L. J.

View Article and Find Full Text PDF