Publications by authors named "Ashley J Hughes"

Resolving the structural dynamics of the initial steps of chemical reactions is challenging. We report the femtosecond time-resolved wide-angle x-ray scattering of the photodissociation of diiodomethane in cyclohexane. The data reveal with structural detail how the molecule dissociates into radicals, how the radicals collide with the solvent, and how they form the photoisomer.

View Article and Find Full Text PDF

Background: At our institution, peripherally inserted, 8.5-French rapid-infusion catheters (RICs) are placed for high-flow administration of intravenous fluids and blood products during liver transplant (LT). We sought to estimate the incidence of RIC placement-associated complications in LT patients.

View Article and Find Full Text PDF

Cryptochromes are blue-light photoreceptor proteins, which provide input to circadian clocks. The cryptochrome from (Cry) modulates the degradation of Timeless and itself. It is unclear how light absorption by the chromophore and the subsequent redox reactions trigger these events.

View Article and Find Full Text PDF

Sensor histidine kinases are central to sensing in bacteria and in plants. They usually contain sensor, linker, and kinase modules and the structure of many of these components is known. However, it is unclear how the kinase module is structurally regulated.

View Article and Find Full Text PDF

Light-oxygen-voltage (LOV) receptors are sensory proteins controlling a wide range of organismal adaptations in multiple kingdoms of life. Because of their modular nature, LOV domains are also attractive for use as optogenetic actuators. A flavin chromophore absorbs blue light, forms a bond with a proximal cysteine residue, and induces changes in the surroundings.

View Article and Find Full Text PDF
Article Synopsis
  • The study compared the effectiveness of NMR and CD spectroscopies in analyzing the folding behaviors of two similar cyclic β-hairpins.
  • Both NAMFIS-type NMR ensemble analysis and CD spectroscopy successfully captured the effects of changing a single interaction site on folding, showing reliable results.
  • Conversely, a technique using single-site C NMR chemical shift melting curves failed to provide accurate insights compared to other methods.
View Article and Find Full Text PDF

Phytochromes are light sensor proteins found in plants, bacteria, and fungi. They function by converting a photon absorption event into a conformational signal that propagates from the chromophore through the entire protein. However, the structure of the photoactivated state and the conformational changes that lead to it are not known.

View Article and Find Full Text PDF

Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them.

View Article and Find Full Text PDF

Concentrations of circulating galectin-3, a metastasis promoter, are greatly increased in cancer patients. Here we show that 2- or 6-de-O-sulfated, N-acetylated heparin derivatives are galectin-3 binding inhibitors. These chemically modified heparin derivatives inhibited galectin-3-ligand binding and abolished galectin-3-mediated cancer cell-endothelial adhesion and angiogenesis.

View Article and Find Full Text PDF

An attractive strategy for ameliorating symptoms arising from the multi-faceted processes of excessive and/or continual inflammation would be to identify compounds able to interfere with multiple effectors of inflammation. The well-tolerated pharmaceutical, heparin, is capable of acting through several proteins in the inflammatory cascade, but its use is prevented by strong anticoagulant activity. Derivatives of heparin involving the periodate cleavage of 2,3 vicinal diols in non-sulfated uronate residues (glycol-split) and replacement of N-sulphamido- with N-acetamido- groups in glucosamine residues, capable of inhibiting neutrophil elastase activity in vitro, while exhibiting attenuated anticoagulant properties, have been identified and characterised.

View Article and Find Full Text PDF

The structural characterization and the anticoagulant potential of a novel heparin/heparan sulfate-like compound from the heads of Litopenaeus vannamei shrimp are described. While it is distinct from either heparin or heparan sulfate, enzymatic depolymerization and nuclear magnetic resonance spectroscopy analyses revealed that this molecule does share some structural features with heparin, such as the high degree of N- and 6-O-sulfation and minor N-acetylation, and with heparan sulfate, in the glucuronic acid content. Its ability to stabilize human antithrombin explains its significant anticoagulant activity in aPTT and Factor-Xa inhibition assays.

View Article and Find Full Text PDF

The evolution of the fibroblast growth factor (FGF)-FGF receptor (FGFR) signalling system has closely followed that of multicellular organisms. The abilities of nine FGFs (FGF-1 to FGF-9; examples of FGF subfamilies 1, 4, 7, 8, and 9) and seven FGFRs or isoforms (FGFR1b, FGFR1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c, and FGFR4) to support signalling in the presence of heparin, a proxy for the cellular heparan sulfate coreceptor, were assembled into a network. A connection between two FGFRs was defined as their mutual ability to signal with a particular FGF.

View Article and Find Full Text PDF

The naturally occurring anionic cell surface polysaccharide heparan sulfate is involved in key biological activities and is implicated in amyloid formation. Following addition of Zn-heparan sulfate, hen lysozyme, a model amyloid forming protein, resembled β-rich amyloid by far UV circular dichroism (increased β-sheet: +25%), with a significantly reduced melting temperature (from 68 to 58 °C) by fluorescence shift assay. Secondary structure stability of the Zn-heparan sulfate complex with lysozyme was also distinct from that with heparan sulfate, under stronger denaturation conditions using synchrotron radiation circular dichroism.

View Article and Find Full Text PDF