Mosquitoes carrying Wolbachia endosymbionts are being released in many countries for arbovirus control. The wMel strain of Wolbachia blocks Aedes-borne virus transmission and can spread throughout mosquito populations by inducing cytoplasmic incompatibility. Aedes aegypti mosquitoes carrying wMel were first released into the field in Cairns, Australia, over a decade ago, and with wider releases have resulted in the near elimination of local dengue transmission.
View Article and Find Full Text PDFWolbachia are being used to reduce dengue transmission by Aedes aegypti mosquitoes around the world. To date releases have mostly involved Wolbachia strains with limited fitness effects but strains with larger fitness costs could be used to suppress mosquito populations. However, such infections are expected to evolve towards decreased deleterious effects.
View Article and Find Full Text PDFare maternally inherited endosymbiotic bacteria found within many insect species. mosquitoes experimentally infected with are being released into the field for borne disease control. These infections induce cytoplasmic incompatibility which is used to suppress populations through incompatible matings or replace populations through the reproductive advantage provided by this mechanism.
View Article and Find Full Text PDFBackground: With Aedes aegypti mosquitoes now being released in field programmes aimed at disease suppression, there is interest in identifying factors influencing the mating and invasion success of released mosquitoes. One factor that can increase release success is size: released males may benefit competitively from being larger than their field counterparts. However, there could be a risk in releasing only large males if small field females avoid these males and instead prefer small males.
View Article and Find Full Text PDFBackground: The mosquito Aedes aegypti (L.) is a major vector of viral diseases like dengue fever, Zika and chikungunya. Aedes aegypti exhibits high morphological and behavioral variation, some of which is thought to be of epidemiological significance.
View Article and Find Full Text PDFWolbachia endosymbionts are potentially useful tools for suppressing disease transmission by Aedes aegypti mosquitoes because Wolbachia can interfere with the transmission of dengue and other viruses as well as causing deleterious effects on their mosquito hosts. Most recent research has focused on the wMel infection, but other infections also influence viral transmission and may spread in natural populations. Here, we focus on the wAlbB infection in an Australian outbred background and show that this infection has many features that facilitate its invasion into natural populations including strong cytoplasmic incompatibility, a lack of effect on larval development, an equivalent mating success to uninfected males and perfect maternal transmission fidelity.
View Article and Find Full Text PDFThe endosymbiotic bacteria Wolbachia pipientis (wMel strain) has been successfully established in several populations of Aedes aegypti, the primary dengue vector. The virulent Wolbachia strain wMelPop is known to cause several pathological impacts (increased egg mortality, life shortening, etc.) reducing overall fitness in the mosquito Ae.
View Article and Find Full Text PDFThe wMel infection of Drosophila melanogaster was successfully transferred into Aedes aegypti mosquitoes where it has the potential to suppress dengue and other arboviruses. The infection was subsequently spread into two natural populations at Yorkeys Knob and Gordonvale near Cairns, Queensland in 2011. Here we report on the stability of the infection following introduction and we characterize factors influencing the ongoing dynamics of the infection in these two populations.
View Article and Find Full Text PDF