Publications by authors named "Ashley Durfee"

Mesoporous silica nanoparticle-supported lipid bilayers, termed 'protocells,' represent a potentially transformative class of therapeutic and theranostic delivery vehicle. The field of targeted drug delivery poses considerable challenges that cannot be addressed with a single 'magic bullet'. Consequently, the protocell has been designed as a modular platform composed of interchangeable biocompatible components.

View Article and Find Full Text PDF

Virus-like particles (VLPs) of bacteriophage MS2 possess numerous features that make them well-suited for use in targeted delivery of therapeutic and imaging agents. MS2 VLPs can be rapidly produced in large quantities using in vivo or in vitro synthesis techniques. Their capsids can be modified in precise locations via genetic insertion or chemical conjugation, facilitating the multivalent display of targeting ligands.

View Article and Find Full Text PDF

Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles.

View Article and Find Full Text PDF