Background And Aim: Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. To improve outcomes for these patients, we need to develop new treatment strategies. Personalized cancer medicine, where patients are treated based on the characteristics of their own tumor, has gained significant interest for its promise to improve outcomes and reduce unnecessary side effects.
View Article and Find Full Text PDFIn vitro absorption, distribution, metabolism and elimination (ADME) assays are widely used for profiling compounds in pharmaceutical drug discovery programs. Many compounds are screened in metabolic stability assays, using liver microsomes as a model of intrinsic hepatic clearance. Analysis of metabolic stability assays has relied on high throughput LC-MS/MS techniques to keep up with automated assays and compound profiling needs.
View Article and Find Full Text PDFA one-pot electrochemical nickel-catalyzed decarboxylative sp-sp cross-coupling reaction has been developed using redox-active esters prepared in situ from alkyl carboxylates and N-hydroxyphthalimide tetramethyluronium hexafluorophosphate (PITU). This undivided cell one-pot method enables C-C bond formation using inexpensive, benchtop-stable reagents with isolated yields up to 95% with good functional group tolerance, which includes nitrile, ketone, ester, alkene and selectivity over other aromatic halogens.
View Article and Find Full Text PDFThe scarcity of complex intermediates in pharmaceutical research motivates the pursuit of reaction optimization protocols on submilligram scales. We report here the development of an automated flow-based synthesis platform, designed from commercially available components, that integrates both rapid nanomole-scale reaction screening and micromole-scale synthesis into a single modular unit. This system was validated by exploring a diverse range of reaction variables in a Suzuki-Miyaura coupling on nanomole scale at elevated temperatures, generating liquid chromatography-mass spectrometry data points for 5760 reactions at a rate of >1500 reactions per 24 hours.
View Article and Find Full Text PDF