Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR).
View Article and Find Full Text PDFImportance: Interventions that substantially slow neurodegeneration are needed to address the growing burden of Alzheimer disease (AD) to societies worldwide. Elevated brain iron observed in AD has been associated with accelerated cognitive decline and may be a tractable drug target.
Objective: To investigate whether the brain-permeable iron chelator deferiprone slows cognitive decline in people with AD.
Cells have developed a highly regulated system for the uptake, transport, utilization, storage, and export of metals, ensuring the maintenance of cellular homeostasis. Small extracellular vesicles (sEVs) function as a mechanism through which a cell can export its cargo and transfer it to recipient cells. However, in contrast to the other molecular cargo associated with sEVs, the metal content of sEVs is not well characterized.
View Article and Find Full Text PDFThe Alzheimer's disease (AD)-affected brain purges K with concurrently increasing serum K, suggesting brain-blood K transferal. Here, natural stable K isotope ratios-δ41K-of human serum samples were characterized in an AD biomarker pilot study (plus two paired Li-heparin and potassium ethylenediaminetetraacetic acid [K-EDTA] plasma samples). AD serum was found to have a significantly lower mean δ41K relative to controls.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a debilitating affliction of the central nervous system (CNS) that involves demyelination of neuronal axons and neurodegeneration resulting in disability that becomes more pronounced in progressive forms of the disease. The involvement of neurodegeneration in MS underscores the need for effective neuroprotective approaches necessitating identification of new therapeutic targets. Herein, we applied an integrated elemental analysis workflow to human MS-affected spinal cord tissue utilising multiple inductively coupled plasma-mass spectrometry methodologies.
View Article and Find Full Text PDFThe strongest genetic risk factor for late-onset Alzheimer's disease (AD) is allelic variation of the APOE gene, with the following risk structure: ε4 > ε3 > ε2. The biochemical basis for this risk profile is unclear. Here, we reveal a new role for the APOE gene product, apolipoprotein E (ApoE) in regulating cellular copper homeostasis, which is perturbed in the AD brain.
View Article and Find Full Text PDFBackground: The associations between mood disorders (anxiety and depression) and mild cognitive impairment (MCI) or Alzheimer's dementia (AD) remain unclear.
Methods: Data from the Australian Imaging, Biomarker & Lifestyle (AIBL) study were subjected to logistic regression to determine both cross-sectional and longitudinal associations between anxiety/depression and MCI/AD. Effect modification by selected covariates was analysed using the likelihood ratio test.
The copper compound Cu(atsm) has progressed to phase 2/3 testing for treatment of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Cu(atsm) is neuroprotective in mutant SOD1 mouse models of ALS where its activity is ascribed in part to improving availability of essential copper. However, SOD1 mutations cause only ~ 2% of ALS cases and therapeutic relevance of copper availability in sporadic ALS is unresolved.
View Article and Find Full Text PDFFerroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.
View Article and Find Full Text PDFBackground: Ferroptosis is a form of regulated cell death characterised by lipid peroxidation as the terminal endpoint and a requirement for iron. Although it protects against cancer and infection, ferroptosis is also implicated in causing neuronal death in degenerative diseases of the central nervous system (CNS). The precise role for ferroptosis in causing neuronal death is yet to be fully resolved.
View Article and Find Full Text PDFBackground: Current antidepressants have limitations due to insufficient efficacy and delay before improvement in symptoms. Polymorphisms of the serotonin transporter (5-HTT) gene have been linked to depression (when combined with stressful life events) and altered response to selective serotonergic reuptake inhibitors. We have previously revealed the antidepressant-like properties of the iron chelator deferiprone in the 5-HTT knock-out (KO) mouse model of depression.
View Article and Find Full Text PDFA great deal of nanocarriers have been applied to induce ferroptosis in cancer research, yet there are limited examples of nanocarrier formulations to rescue ferroptosis, which can be applied to neurodegeneration, inflammation, liver damage, kidney disease, and more. Here, we present the synthesis, characterization, and in vitro evaluation of pH-responsive, core-cross-linked micelle (CCM) ferrostatin-1 (Fer-1) conjugates with amine, valproic acid, and biotin surface chemistries. Fer-1 release from stable and defined CCM Fer-1 conjugates was quantified, highlighting the sustained release for 24 h.
View Article and Find Full Text PDFBackground And Purpose: Magnetic resonance spectroscopy (MRS) measures neurochemicals in vivo. Glutathione (GSH) is a neuroprotective chemical shown to vary significantly in patients with Alzheimer's disease (AD). This work investigates the reproducibility of GSH measures in the mesial temporal lobe (MTL) to identify its potential clinical utility.
View Article and Find Full Text PDFObjective: Filipin complex is an autooxidation-prone fluorescent histochemical stain used in the diagnosis of Niemann-Pick Disease Type C (NP-C), a neurodegenerative lysosomal storage disorder. It is also widely used by researchers examining the distribution and accumulation of unesterified cholesterol in cell and animal models of neurodegenerative diseases including NP-C and Sanfilippo syndrome (mucopolysaccharidosis IIIA; MPS IIIA). Recently, it has been suggested to be useful in studying Alzheimer's and Huntington's disease.
View Article and Find Full Text PDFTau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet β-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD.
View Article and Find Full Text PDFLipids play a significant role in maintaining central nervous system (CNS) structure and function, and the dysregulation of lipid metabolism is known to occur in many neurological disorders, including Alzheimer's disease. Here we review what is currently known about lipid dyshomeostasis in Alzheimer's disease. We propose that small extracellular vesicle (sEV) lipids may provide insight into the pathophysiology and progression of Alzheimer's disease.
View Article and Find Full Text PDFP-glycoprotein (P-gp), expressed at the blood-brain barrier (BBB), is critical in preventing brain access to substrate drugs and effluxing amyloid beta (Aβ), a contributor to Alzheimer's disease (AD). Strategies to regulate P-gp expression therefore may impact central nervous system (CNS) drug delivery and brain Aβ levels. As we have demonstrated that the copper complex copper diacetyl bis(4-methyl-3-thiosemicarbazone) (Cu(ATSM)) increases P-gp expression and function in human brain endothelial cells, the present study assessed the impact of Cu(ATSM) on expression and function of P-gp in mouse brain endothelial cells (mBECs) and capillaries in vivo, as well as in peripheral organs.
View Article and Find Full Text PDFBackground: Anorexia nervosa (AN) is a potentially fatal psychiatric condition, associated with structural brain changes such as gray matter volume loss. The pathophysiological mechanisms for these changes are not yet fully understood. Iron is a crucial element in the development and function of the brain.
View Article and Find Full Text PDFVitamin A (retinol) is a lipid-soluble vitamin that acts as a precursor for several bioactive compounds, such as retinaldehyde (retinal) and isomers of retinoic acid. Retinol and all-trans-retinoic acid (atRA) penetrate the blood-brain barrier and are reported to be neuroprotective in several animal models. We characterised the impact of retinol and its metabolites, all-trans-retinal (atRAL) and atRA, on ferroptosis-a programmed cell death caused by iron-dependent phospholipid peroxidation.
View Article and Find Full Text PDFThe lack of disease-modifying treatments for Alzheimer's disease (AD) that substantially alter the course of the disease highlights the need for new biological models of disease progression and neurodegeneration. Oxidation of macromolecules within the brain, including lipids, proteins, and DNA, is believed to contribute to AD pathophysiology, concomitant with dysregulation of redox-active metals, such as iron. Creating a unified model of pathogenesis and progression underpinned by iron dysregulation and redox dysregulation in AD could lead to new therapeutic targets with disease-modifying potential.
View Article and Find Full Text PDFObjective: -acetylcysteine (NAC) is a novel therapeutic agent with multiple mechanisms of action in the central nervous system and a favourable side effect profile. Clinical evidence indicates that adjunctive NAC may reduce the severity of depressive symptoms in individuals with major depressive disorder (MDD).
Methods: A 12-week randomised controlled trial of 2,000 mg/day adjunctive NAC for MDD found no significant improvement at the primary endpoint (week 12) but did see improvements at the post-discontinuation interview (week 16).
Background: Despite overall improvement in breast cancer patient outcomes from earlier diagnosis and personalised treatment approaches, some patients continue to experience recurrence and incurable metastases. It is therefore imperative to understand the molecular changes that allow transition from a non-aggressive state to a more aggressive phenotype. This transition is governed by a number of factors.
View Article and Find Full Text PDFRadical trapping agents such as Ferrostatin-1 (Fer-1) are capable of rescuing cells from ferroptosis, an iron-dependent form of cell death. Previously, poly(2-oxazoline)-Fer-1 (POx-Fer-1) conjugates were reported, which possess increased water-solubility and remain active after covalent conjugation of Fer-1. In this study, we break down the structural and functional layers of POx-Fer-1 conjugates and reveal that drug-free POx containing arylalkylamine and benzamide motifs show anti-ferroptosis properties.
View Article and Find Full Text PDFIron overload in neurodegenerative diseases is well established but of uncertain significance. In a recent article, Ryan et al. reveal that microglia are especially vulnerable to iron overload-induced ferroptosis.
View Article and Find Full Text PDF