Lithium-sulfur battery is considered to be one of the main candidates for "post-lithium-ion" battery generation because of its high theoretical specific capacity and inherently low cost. The role of electrolyte is particularly important in this system, and remarkable battery performances have been reported by tuning the amount of salt in the electrolyte. To further understand the reasons for such improvements, we chose the lithium bis(trifluoromethanesulfonyl)imide in 1,3-dioxolane electrolyte as a model salt-solvent system for a systematic study of conductivity and viscosity over a wide range of concentration from 10 up to 5 m.
View Article and Find Full Text PDFA series of processes have been developed to facilitate the rapid discovery of new promising thermoelectric alloys. A novel combinatorial facility where elements are wire-fed and laser-melted was designed and constructed. Different sample compositions can be achieved by feeding different element wires at specific rates.
View Article and Find Full Text PDFPtM overlayers (where M=Fe, Co or Ni) supported on Pt{111} are prepared via thermal annealing in either a nitrogen/water or hydrogen ambient of dilute aqueous droplets containing M(Z+) cations directly attached to the electrode. Two different PtM phases are detected depending on the nature of the post-annealing cooling environment. The first of these consists of small (<20 nm), closely packed microcrystals comprised of a central metallic core and a shell (several monolayers thick) of mixed metal oxides/hydroxides.
View Article and Find Full Text PDFThe voltammetry of Pt{111}, Pt{100}, Pt{110} and Pt{311} single crystal electrodes as a function of perchloric acid concentration (0.05-2.00 M) has been studied in order to test the assertion made in recent reports by Watanabe et al.
View Article and Find Full Text PDF