Publications by authors named "Ashley Bear"

On June 24, 2022, the US Supreme Court's decision in Dobbs v Jackson Women's Health Organization marked the removal of the constitutional right to abortion in the USA, introducing a complex ethical and legal landscape for patients and providers. This shift has had immediate health and equity repercussions, but it is also crucial to examine the broader impacts on states, health-care systems, and society as a whole. Restrictions on abortion access extend beyond immediate reproductive care concerns, necessitating a comprehensive understanding of the ruling's consequences across micro and macro levels.

View Article and Find Full Text PDF

The Dobbs v Jackson Women's Health Organization Supreme Court decision, which revoked the constitutional right to abortion in the USA, has impacted the national medical workforce. Impacts vary across states, but providers in states with restrictive abortion laws now must contend with evolving legal and ethical challenges that have the potential to affect workforce safety, mental health, education, and training opportunities, in addition to having serious impacts on patient health and far-reaching societal consequences. Moreover, Dobbs has consequences on almost every facet of the medical workforce, including on physicians, nurses, pharmacists, and others who work within the health-care system.

View Article and Find Full Text PDF

Seasonal plasticity in male courtship in butterflies is due to variation in levels of the steroid hormone 20E (20-hydroxyecdysone) during pupation. Wet season (WS) males have high levels of 20E and become active courters. Dry season (DS) males have lower levels of 20E and reduced courtship rates.

View Article and Find Full Text PDF

In contrast to the important role of hormones in the development of sexual traits in vertebrates (Cox RM, Stenquist DS, Calsbeek R. 2009. Testosterone, growth and the evolution of sexual size dimorphism.

View Article and Find Full Text PDF

It is well established that steroid hormones regulate sexual behavior in vertebrates via organizational and activational effects. However, whether the organizational/activational paradigm applies more broadly to the sexual behavior of other animals such as insects is not well established. Here we describe the hormonal regulation of a sexual behavior in the seasonally polyphenic butterfly Bicyclus anynana is consistent with the characteristics of an organizational effect.

View Article and Find Full Text PDF

Bodies are often made of repeated units, or serial homologs, that develop using the same core gene regulatory network. Local inputs and modifications to this network allow serial homologs to evolve different morphologies, but currently we do not understand which modifications allow these repeated traits to evolve different levels of phenotypic plasticity. Here we describe variation in phenotypic plasticity across serial homologous eyespots of the butterfly Bicyclus anynana, hypothesized to be under selection for similar or different functions in the wet and dry seasonal forms.

View Article and Find Full Text PDF

The differentiation of male and female characteristics in vertebrates and insects has long been thought to proceed via different mechanisms. Traditionally, vertebrate sexual development was thought to occur in two phases: a primary and a secondary phase, the primary phase involving the differentiation of the gonads, and the secondary phase involving the differentiation of other sexual traits via the influence of sex hormones secreted by the gonads. In contrast, insect sexual development was thought to depend exclusively on cell-autonomous expression of sex-specific genes.

View Article and Find Full Text PDF

Functional MRI (fMRI) has emerged as a powerful technique for assessing neural effects of psychoactive drugs and other stimuli. Several experimental approaches have been developed to use fMRI in anesthetized and awake animal subjects, each of which has its advantages and complexities. We sought to assess whether one particular method to scan alert postanesthetized animals can be used to assess fMRI effects of opioid agonists.

View Article and Find Full Text PDF

Environmental cues can act to initiate alternative developmental trajectories that result in different adult phenotypes, including behavioral phenotypes. The developmental period when an organism is sensitive to the cue is often described as a critical period. Here we investigated the critical period for temperature-sensitive courtship rate plasticity in the butterfly Bicyclus anynana.

View Article and Find Full Text PDF

Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated the dissection of canonical eukaryotic defence pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defence and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers.

View Article and Find Full Text PDF

Studies on insect melanism have greatly contributed to our understanding of natural selection and the ultimate factors influencing the evolution of darkly pigmented phenotypes. Research on several species of melanic lepidopteran larvae have found that low levels of circulating juvenile hormone (JH) titers are associated with a melanic phenotype, suggesting that genetic changes in the JH biosynthetic pathway give rise to increased deposition of melanin granules in the cuticle in this group. But does melanism arise through different molecular mechanisms in different species? The present study reports on a Bicyclus anynana (Lepidoptera: Nymphalidae) dark larvae single locus mutation, in which larvae exhibit a darker cuticle relative to wild type.

View Article and Find Full Text PDF

Delta opioid agonists can selectively enhance the antinociceptive effects of mu opioid agonists without enhancing some other, potentially undesirable mu agonist effects. However, the degree of delta receptor efficacy required to produce this profile of interactions is unknown. To address this issue, the present study examined interactions produced by the mu agonist fentanyl and the intermediate-efficacy delta opioid MSF61 in rhesus monkeys.

View Article and Find Full Text PDF