Publications by authors named "Ashley A Vu"

Bone homeostasis is predicated by osteoblast and osteoclast cell cycles where gene expressions are responsible for their differentiation from human mesenchymal stem cells (hMSC) and monocytes, respectively. The pro-osteogenic potential of an hMSC-monocyte co-culture can be measured through complementary DNA (mRNA synthesis) within the nucleus, known as quantitative polymerase chain reaction (qPCR). Through this technique, the effects of garlic extract (allicin) release from calcium phosphate bone scaffolds on gene expression of bone forming and bone remodeling cells was explored.

View Article and Find Full Text PDF

Natural medicines have long been used to treat physiological ailments where both ginger (gingerol) and garlic (allicin) are key players in immune system promotion, reduction in blood pressure, and lowering inflammation response. With their efficacy in bone healing, these compounds have great value as medicinal additives in bone scaffolds for localized treatment to support tissue formation, along with providing their natural therapeutic benefits. Utilization of 3D-printed (3DP) bone tissue engineering scaffolds as drug delivery vehicles for ginger and garlic extracts enables patient specificity in bone defect applications with enhanced osseointegration.

View Article and Find Full Text PDF

Vitamin A is a fat-soluble compound widely known for vision health. Highly variable reports on its effects on bone health have necessitated further research to truly understand its role on bone cell proliferation. Retinol, one bioactive form of vitamin A, is incorporated into synthetic bone graft scaffolds for low load-bearing clinical bone treatment.

View Article and Find Full Text PDF

Additive manufacturing (AM), or 3D printing, of bioceramic scaffolds promises personalized treatment options for patients with site-specific designability for repair and reconstruction of bone defects. Although the theory for creating these complex geometries has already been made possible through AM's advancement, such shapes' manufacturability is difficult due to printing with ceramics' inherent complexities. Ceramics have the added challenge of being highly brittle, poor handleability of green (pre-sintered) parts, making complex shape high strength parts challenging to manufacture.

View Article and Find Full Text PDF

Traditional infection prevention and treatment methods include synthetic antibiotics, which can cause severe adverse side effects. Carvacrol and thymol are biologically active monoterpenoid extractants from oregano leaves with antibiotic capabilities; however, little is known regarding their effects on bone tissue engineering. The objective of this work is to understand their effects on osteogenesis, specifically with osteoblast and osteoclast cells, from surface-modified Ti6Al4V with plasma sprayed hydroxyapatite (HA) coatings.

View Article and Find Full Text PDF

Osteosarcoma remains one of the most common malignant primary bone tumors. Post-surgical defect repair combined with tumor suppression remains a major clinical challenge. Investigations of alternative treatments for osteosarcoma, while promising, have led to multi-drug resistance.

View Article and Find Full Text PDF

The stability of plasma-sprayed hydroxyapatite (HA) coatings on metallic implants in vivo remains a significant challenge for load-bearing orthopedic implants despite their excellent mechanical and osteoconductive properties. This study focuses on oxide layer formation on the surface of Ti6Al4V samples through furnace heating at 600, 700, and 800 °C for 10 min for optimization of the most effective oxide layer to increase plasma coating crystallinity and improve plasma coating bond strength with the metal surface. The 800 °C heat treatment shows an effective oxide layer which increases coating crystallinity from 64 to 75% and coating adhesive bond strength from 25.

View Article and Find Full Text PDF

Three-dimensional printing (3DP) is becoming a standard manufacturing practice for a variety of biomaterials and biomedical devices. This layer-by-layer methodology provides the ability to fabricate parts from computer-aided design files without the need for part-specific tooling. Three-dimensional printed medical components have transformed the field of medicine through on-demand patient care with specialized treatment such as local, strategically timed drug delivery, and replacement of once-functioning body parts.

View Article and Find Full Text PDF

Bone is a randomized, complex porous network which researchers have tried to mimic within bone tissue engineering scaffolds. The objective of this study was to understand the effects of random and controlled scaffold porosity on the release kinetics of vitamin D to determine if a designed porous structure was comparable in effectiveness on osteoblast proliferation to the randomized essence of natural bone. In this study, porous tricalcium phosphate (TCP) scaffolds were prepared by fugitive material removal method using naphthalene and 3D printing to model random and controlled porosity, respectively.

View Article and Find Full Text PDF

In this study, we explored a ternary dopant system utilizing 0.25 wt% ZnO to induce osteogenesis, 0.5 wt% SiO to induce angiogenesis, and 2.

View Article and Find Full Text PDF

Vitamin D is a hydrophobic micronutrient and is known for inhibiting osteoclastic bone resorption suppression of the Receptor Activator of Nuclear factor-Kappa B (RANK ligand) expression in osteoblasts. Although vitamin D is well-known for its promotion in bone health, little is known on its effects directly on bone cells. The objective of this study was to understand the effects of vitamin D release from 3D printed calcium phosphate scaffolds towards bone cell proliferation.

View Article and Find Full Text PDF

Plasma sprayed hydroxyapatite (HA) coating is known to improve the osteoconductivity of metallic implants. However, the adhesive bond strength of the coating is affected due to a mismatch in coefficients of thermal expansion (CTE) between the metal and HA ceramic. In this study, a gradient HA coating was prepared on Ti6Al4V by laser engineered net shaping (LENS™) followed by plasma spray deposition.

View Article and Find Full Text PDF

The scientific objective of this study was to understand the influence of PCL coating on alendronate drug release kinetics in vitro. Our hypothesis was PCL coating would minimize burst release of alendronate from plasma sprayed Mg-doped hydroxyapatite (HA) coated commercially pure titanium (CpTi) samples. In the US alone, over 44 million women and men aged 50 and older are affected by osteoporosis which can lead to replacement and/or revision surgeries.

View Article and Find Full Text PDF