Hydroponic systems are examples of controlled environment agriculture (CEA) and present a promising alternative to traditional farming methods by increasing productivity, profitability, and sustainability. In hydroponic systems, crops are grown in the absence of soil and thus lack the native soil microbial community. This review focuses on fungi and oomycetes, both beneficial and pathogenic, that can colonize crops and persist in hydroponic systems.
View Article and Find Full Text PDFHydroponic greenhouses and vertical farms provide an alternative crop production strategy in regions that experience low temperatures, suboptimal sunlight, or inadequate soil quality. However, hydroponic systems are soilless and, therefore, have vastly different bacterial microbiota than plants grown in soil. This review highlights some of the most prevalent plant growth-promoting bacteria (PGPB) and destructive phytopathogenic bacteria that dominate hydroponic systems.
View Article and Find Full Text PDFMat cells (MCs) are located in the skin and mucous membranes at points where the body meets the environment. When activated, MCs release inflammatory cytokines, which help the immune system to fight viruses. MCs produce, and have receptors for interferons (IFNs), which belong to a family of cytokines recognized for their antiviral properties.
View Article and Find Full Text PDFImprovements to the world's food supply chain are needed to ensure sufficient food is produced to meet increasing population demands. Growing food in soilless hydroponic systems constitutes a promising strategy, as this method utilizes significantly less water than conventional agriculture, can be situated in urban areas, and can be stacked vertically to increase yields per acre. However, further research is needed to optimize crop yields in these systems.
View Article and Find Full Text PDFJ Immunother Cancer
March 2022
Background: Novel therapies are needed to improve outcomes for women diagnosed with ovarian cancer. Oncolytic viruses are multifunctional immunotherapeutic biologics that preferentially infect cancer cells and stimulate inflammation with the potential to generate antitumor immunity. Herein we describe (Orf virus (OrfV)), an oncolytic poxvirus, as a viral immunotherapy for ovarian cancer.
View Article and Find Full Text PDFEpithelial ovarian cancer is the deadliest gynecological malignancy. The lack of effective treatments highlights the need for novel therapeutic interventions. The aim of this study was to investigate whether sustained adeno-associated virus (AAV) vector-mediated expression of vascular normalizing agents 3TSR and Fc3TSR and the antiangiogenic monoclonal antibody, Bevacizumab, with or without oncolytic virus treatment would improve survival in an orthotopic syngeneic mouse model of epithelial ovarian carcinoma.
View Article and Find Full Text PDFUrothelial carcinoma (UC) is the most common urinary tumour in dogs. Despite a range of treatment options, prognosis remains poor in dogs. In people, breakthroughs with checkpoint inhibitors have established new standards of care for muscle-invasive bladder cancer patients and elevated levels of programmed cell death protein 1 (PD-1) suggest immune checkpoint blockade may be a novel target for therapy.
View Article and Find Full Text PDFInfluenza viruses have affected the world for over a century, causing multiple pandemics. Throughout the years, many prophylactic vaccines have been developed for influenza; however, these viruses are still a global issue and take many lives. In this paper, we review influenza viruses, associated immunological mechanisms, current influenza vaccine platforms, and influenza infection, in the context of immunocompromised populations.
View Article and Find Full Text PDFVaccination can prevent viral infections via virus-specific T cells, among other mechanisms. A goal of oncolytic virotherapy is replication of oncolytic viruses (OVs) in tumors, so pre-existing T cell immunity against an OV-encoded transgene would seem counterproductive. We developed a treatment for melanomas by pre-vaccinating against an oncolytic vesicular stomatitis virus (VSV)-encoded tumor antigen.
View Article and Find Full Text PDFAlthough previous research demonstrates that skin-associated archaea are rarely detected within human skin microbiome data, exist at relatively low abundance, and are primarily affiliated with the and phyla, other studies suggest that archaea are consistently detected and relatively abundant on human skin, with skin "archaeomes" dominated by putative ammonia oxidizers of the class ( phylum, formerly ). Here, we evaluated new and existing 16S rRNA gene sequence data sourced from mammalian skin and skin-associated surfaces and generated with two commonly used universal prokaryotic primer sets to assess archaeal prevalence, relative abundance, and taxonomic distribution. Archaeal 16S rRNA gene sequences were detected in only 17.
View Article and Find Full Text PDFInterferons (IFNs) are induced by viruses and are the main regulators of the host antiviral response. They balance tissue tolerance and immune resistance against viral challenges. Like all cells in the human body, neutrophils possess the receptors for IFNs and contribute to antiviral host defense.
View Article and Find Full Text PDFNaturally occurring adeno-associated virus (AAV) serotypes that bind to ligands such as AVB sepharose or heparin can be purified by affinity chromatography, which is a more efficient and scalable method than gradient ultracentrifugation. Wild-type AAV8 does not bind effectively to either of these molecules, which constitutes a barrier to using this vector when a high throughput design is required. Previously, AAV8 was engineered to contain a SPAKFA amino acid sequence to facilitate purification using AVB sepharose resin; however, in vivo studies were not conducted to examine whether these capsid mutations altered the transduction profile.
View Article and Find Full Text PDFCytokine Growth Factor Rev
December 2020
In the past two decades there have been substantial advances in understanding the anti-cancer mechanisms of oncolytic viruses (OVs). OVs can mediate their effects directly, by preferentially infecting and killing tumour cells. Additionally, OVs can indirectly generate anti-tumour immune responses.
View Article and Find Full Text PDFNeutrophils are innate leukocytes that mount a rapid response to invading pathogens and sites of inflammation. Although neutrophils were traditionally considered responders to bacterial infections, recent advances have demonstrated that they are interconnected with both viral infections and cancers. One promising treatment strategy for cancers is to administer an oncolytic virus to activate the immune system and directly lyse cancerous cells.
View Article and Find Full Text PDFAn integral step in the development of solid tumors is the recruitment of blood vessels to fuel tumor growth. Antiangiogenic therapies can inhibit this process and control solid tumor growth. Thrombospondin-1 is an antiangiogenic protein possessing three type I repeats (3TSR) near the center of the protein and a CD47-binding peptide (CD47) in its C-terminus.
View Article and Find Full Text PDFMyeloid cells represent a diverse range of innate leukocytes that are crucial for mounting successful immune responses against viruses. These cells are responsible for detecting pathogen-associated molecular patterns, thereby initiating a signaling cascade that results in the production of cytokines such as interferons to mitigate infections. The aim of this review is to outline recent advances in our knowledge of the roles that neutrophils and inflammatory monocytes play in initiating and coordinating host responses against viral infections.
View Article and Find Full Text PDF