Decreasing speed and stride length over successive races have been shown to be associated with musculoskeletal injury (MSI) in racehorses, demonstrating the potential for early detection of MSI through longitudinal monitoring of changes in stride characteristics. A machine learning (ML) approach for early detection of MSI, enforced rest, and retirement events using this same horse-level, race-level, and stride characteristic data across all race sectionals was investigated. A CatBoost model using features from the two races prior to an event had the highest classification performance (sensitivity score for MSI, enforced rest and retirement equal to 0.
View Article and Find Full Text PDFCatastrophic musculoskeletal injuries (CMI) in horses are associated with both too little and too much high-speed exercise. In order to advise trainers on training and management strategies that minimize the risk of musculoskeletal injury (MSI), a better understanding of how training practices affect MSI in racehorses is needed. Data from prospective studies relating training data and MSI are complicated by the gradual development of pathology and the effect of this on the ability of horses to train consistently prior to the identification of an injury.
View Article and Find Full Text PDFMusculoskeletal injuries in racehorses are difficult to detect prior to catastrophic breakdown. Lameness is commonly attributed to orthopaedic pain in horses, therefore, subtle lameness may be a pre-clinical sign of injury and, if identified early, could allow for preventative intervention. Our objective was to determine if facial expressions could be used to detect mild lameness as an indicator of orthopaedic pain in 'fit to race' horses.
View Article and Find Full Text PDFBackground: Musculoskeletal injuries are observed in Thoroughbred racehorses and may become catastrophic. Currently, there are limited methods for early detection of such injuries. Most injuries develop gradually due to accumulated damage, providing the opportunity for early detection.
View Article and Find Full Text PDFCatastrophic musculoskeletal injuries (CMI) pose a major welfare concern to horses and their riders, yet limited data are available describing their occurrence in South America. Using a retrospective cohort and case-control design, the objective of the study was to determine the incidence of CMI for Thoroughbreds in training and racing, and associated horse-level risk factors in Uruguay. Seventy-seven Thoroughbreds sustained a CMI, 37 of which were age- and sex-matched to 111 control horses in the same race.
View Article and Find Full Text PDFFatigue life (FL) is the number of cycles of load sustained by a material before failure, and is dependent on the load magnitude. For athletes, 'cycles' translates to number of strides, with load proportional to speed. To improve previous investigations estimating workload from distance, we used speed (m/s, x) per stride collected using 5 Hz GPS/800 Hz accelerometer sensors as a proxy for limb load to investigate factors associated with FL in a Thoroughbred race start model over 25,234 race starts, using a combination of mathematical and regression modelling.
View Article and Find Full Text PDFBackground: Certain stride characteristics have been shown to affect changes in biomechanical factors that are associated with injuries in human athletes. Determining the relationship between stride characteristics and musculoskeletal injury (MSI) may be key in limiting injury occurrence in the racehorse.
Objectives: This study aimed to determine whether changes in race day speed and stride characteristics over career race starts are associated with an increased risk of MSI in racehorses.
Understanding the relationship between the training practices of Thoroughbred racehorses and race performance is important to ensure advice given to trainers for injury prevention or management is practical and consistent. We assessed associations between intended volume and speed of gallop training (i.e.
View Article and Find Full Text PDFBackground: With each stride, galloping horses generate large skeletal loads which influence bone physiology, and may contribute to musculoskeletal injury. Horse speed and stride characteristics are related, but the usefulness of using horse speed and distance travelled as a proxy for stride characteristics is unknown.
Objectives: We aimed to determine stride characteristics, their variance and their relationship with speed in horses performing maximally.
Little is known about the types of surfaces used during training of Thoroughbred racehorses or methods of exercise used in addition to ridden track-work. Our aims were to (1) describe the types of surfaces used in the training of Thoroughbred racehorses and to (2) identify alternative approaches used to exercise horses in addition to, or in place of, ridden overground track-work. Information regarding surface and alternative exercise methods was collected as part of an in-person survey of training practices of 66 registered Thoroughbred trainers in Victoria, Australia.
View Article and Find Full Text PDF