Hamilton's rule provides the cornerstone for our understanding of the evolution of all forms of social behavior, from altruism to spite, across all organisms, from viruses to humans. In contrast to the standard prediction from Hamilton's rule, recent studies have suggested that altruistic helping can be favored even if it does not benefit relatives, as long as it decreases the environmentally induced variance of their reproductive success ("altruistic bet-hedging"). However, previous predictions both rely on an approximation and focus on variance-reducing helping behaviors.
View Article and Find Full Text PDFAntimicrobial resistance poses an escalating global threat, rendering traditional drug development approaches increasingly ineffective. Thus, novel alternatives to antibiotic-based therapies are needed. Exploiting pathogen cooperation as a strategy for combating resistant infections has been proposed but lacks experimental validation.
View Article and Find Full Text PDFThe growth and success of many bacteria appear to rely on a stunning range of cooperative behaviours. But what is cooperation and how is it studied?
View Article and Find Full Text PDFObligately multicellular organisms, where cells can only reproduce as part of the group, have evolved multiple times across the tree of life. Obligate multicellularity has only evolved when clonal groups form by cell division, rather than by cells aggregating, as clonality prevents internal conflict. Yet obligately multicellular organisms still vary greatly in 'multicellular complexity' (the number of cells and cell types): some comprise a few cells and cell types, while others have billions of cells and thousands of types.
View Article and Find Full Text PDFPathogenic bacteria respond to antibiotic pressure with the evolution of resistance but survival can also depend on their ability to tolerate antibiotic treatment, known as tolerance. While a variety of resistance mechanisms and underlying genetics are well characterized in vitro and in vivo, an understanding of the evolution of tolerance, and how it interacts with resistance in situ is lacking. We assayed for tolerance and resistance in isolates of from chronic cystic fibrosis lung infections spanning up to 40 years of evolution, with 3 clinically relevant antibiotics: meropenem, ciprofloxacin, and tobramycin.
View Article and Find Full Text PDFAntimicrobial resistance poses an escalating global threat, rendering traditional drug development approaches increasingly ineffective. Thus, novel alternatives to antibiotic-based therapies are needed. Exploiting pathogen cooperation as a strategy for combating resistant infections has been proposed but lacks experimental validation.
View Article and Find Full Text PDFFor infections to be maintained in a population, pathogens must compete to colonize hosts and transmit between them. We use an experimental approach to investigate within-and-between host dynamics using the pathogen and the animal host Within-host interactions can involve the production of goods that are beneficial to all pathogens in the local environment but susceptible to exploitation by non-producers. We exposed the nematode host to ‘producer’ and two ‘non-producer’ bacterial strains (specifically for siderophore production and quorum sensing), in single infections and coinfections, to investigate within-host colonization.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2022
Metazoans function as individual organisms but also as "colonies" of cells whose single-celled ancestors lived and reproduced independently. Insights from evolutionary biology about multicellular group formation help us understand the behavior of cells: why they cooperate, and why cooperation sometimes breaks down. Current explanations for multicellularity focus on two aspects of development which promote cooperation and limit conflict among cells: a single-cell bottleneck, which creates organisms composed of clones, and a separation of somatic and germ cell lineages, which reduces the selective advantage of cheating.
View Article and Find Full Text PDFHorizontal gene transfer via plasmids could favour cooperation in bacteria, because transfer of a cooperative gene turns non-cooperative cheats into cooperators. This hypothesis has received support from theoretical, genomic and experimental analyses. By contrast, we show here, with a comparative analysis across 51 diverse species, that genes for extracellular proteins, which are likely to act as cooperative 'public goods', were not more likely to be carried on either: (1) plasmids compared to chromosomes; or (2) plasmids that transfer at higher rates.
View Article and Find Full Text PDFIndividuals are expected to avoid mating with relatives as inbreeding can reduce offspring fitness, a phenomenon known as inbreeding depression. This has led to the widespread assumption that selection will favour individuals that avoid mating with relatives. However, the strength of inbreeding avoidance is variable across species and there are numerous cases where related mates are not avoided.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
April 2021
In many species that raise young in cooperative groups, breeders live an exceptionally long time despite high investment in offspring production. How is this possible given the expected trade-off between survival and reproduction? One possibility is that breeders extend their lifespans by outsourcing parental care to non-reproductive group members. Having help lightens breeder workloads and the energy that is saved can be allocated to survival instead.
View Article and Find Full Text PDFSince Hamilton published his seminal papers in 1964, our understanding of the importance of cooperation for life on Earth has evolved beyond recognition. Early research was focused on altruism in the social insects, where the problem of cooperation was easy to see. In more recent years, research into cooperation has expanded across the entire tree of life, and has been revolutionized by advances in genetic, microbiological and analytical techniques.
View Article and Find Full Text PDFMale-only parental care, while rare in most animals, is a widespread strategy within teleost fish. The costs and benefits to males of acting as sole carer are highly variable among fish species making it challenging to determine the selective pressures driving the evolution of male-only care to such a high prevalence. We conducted a phylogenetic meta-analysis to examine the costs and benefits of paternal care across fish species.
View Article and Find Full Text PDFIn birds that breed cooperatively in family groups, adult offspring often delay dispersal to assist the breeding pair in raising their young. Kin selection is thought to play an important role in the evolution of this breeding system. However, evidence supporting the underlying assumption that helpers increase the reproductive success of breeders is inconsistent.
View Article and Find Full Text PDFGroup-living species show a diversity of social organization, from simple mated pairs to complex communities of interdependent individuals performing specialized tasks. The advantages of living in cooperative groups are well understood, but why some species breed in small aggregations while others evolve large, complex groups with clearly divided roles is unclear. We address this problem by reconstructing the evolutionary pathways to cooperative breeding across 4,730 bird species.
View Article and Find Full Text PDFInclusive fitness requires a careful accounting of all the fitness effects of a particular behavior. Verbal arguments can potentially exaggerate the inclusive fitness consequences of a behavior by including the fitness of relatives that was not caused by that behavior, leading to error. We show how this "double-counting" error can arise, with a recent example from the signaling literature.
View Article and Find Full Text PDFThe growth and virulence of bacteria depends upon a number of factors that are secreted into the environment. These factors can diffuse away from the producing cells, to be either lost or used by cells that do not produce them (cheats). Mechanisms that act to reduce the loss of secreted factors through diffusion are expected to be favoured.
View Article and Find Full Text PDFA single cheating mutant can lead to the invasion and eventual eradication of cooperation from a population. Consequently, cheat invasion is often considered equal to extinction in empirical and theoretical studies of cooperator-cheat dynamics. But does cheat invasion necessarily equate extinction in nature? By following the social dynamics of iron metabolism in during cystic fibrosis lung infection, we observed that individuals evolved to replace cooperation with a 'private' behaviour.
View Article and Find Full Text PDFThe evolution of helping behaviour in species that breed cooperatively in family groups is typically attributed to kin selection alone. However, in many species, helpers go on to inherit breeding positions in their natal groups, but the extent to which this contributes to selection for helping is unclear as the future reproductive success of helpers is often unknown. To quantify the role of future reproduction in the evolution of helping, we compared the helping effort of female and male retained offspring across cooperative birds.
View Article and Find Full Text PDFBacteria perform cooperative behaviors that are exploitable by noncooperative cheats, and cheats frequently arise and coexist with cooperators in laboratory microcosms. However, evidence of competitive dynamics between cooperators and cheats in nature remains limited. Using the production of pyoverdine, an iron-scavenging molecule, and natural soil populations of Pseudomonas fluorescens, we found that (1) nonproducers are present in the population; (2) they co-occur (<1cm ) with pyoverdine producers; (3) they retain functional pyoverdine receptors; and (4) they can use the pyoverdine of on average 52% of producers.
View Article and Find Full Text PDFAnimals living in harsh environments, where temperatures are hot and rainfall is unpredictable, are more likely to breed in cooperative groups. As a result, harsh environmental conditions have been accepted as a key factor explaining the evolution of cooperation. However, this is based on evidence that has not investigated the order of evolutionary events, so the inferred causality could be incorrect.
View Article and Find Full Text PDFType II toxin-antitoxin (TA) systems are most commonly composed of two genes encoding a stable toxin, which harms the cell, and an unstable antitoxin that can inactivate it. TA systems were initially characterized as selfish elements, but have recently gained attention for regulating general stress responses responsible for pathogen virulence, formation of drug-tolerant persister cells and biofilms-all implicated in causing recalcitrant chronic infections. We use a bioinformatics approach to explore the distribution and evolution of type II TA loci of the opportunistic pathogen, , across longitudinally sampled isolates from cystic fibrosis lungs.
View Article and Find Full Text PDFIndole is a key environmental cue that is used by many organisms. Based on its biochemistry, we suggest indole is used so universally, and by such different organisms, because it derives from the metabolism of tryptophan, a resource essential for many species yet rare in nature. These properties make it a valuable, environmental cue for resources almost universally important for promoting fitness.
View Article and Find Full Text PDFThe sterile worker castes found in the colonies of social insects are often cited as archetypal examples of altruism in nature. The challenge is to explain why losing the ability to mate has evolved as a superior strategy for transmitting genes into future generations. We propose that two conditions are necessary for the evolution of sterility: completely overlapping generations and monogamy.
View Article and Find Full Text PDFOffspring survival can often depend on successful communication with parents about their state of need. Theory suggests that offspring will be less likely to honestly signal their need when they experience greater competition from either a greater number of nestmates or less-related nestmates. We found support for this hypothesis with a comparative analysis, examining data from across 60 species of birds.
View Article and Find Full Text PDF