Publications by authors named "Ashleigh S Davey"

De novo-designed receptor transmembrane domains (TMDs) present opportunities for precise control of cellular receptor functions. We developed a de novo design strategy for generating programmed membrane proteins (proMPs): single-pass α-helical TMDs that self-assemble through computationally defined and crystallographically validated interfaces. We used these proMPs to program specific oligomeric interactions into a chimeric antigen receptor (CAR) that we expressed in mouse primary T cells and found that both in vitro CAR T cell cytokine release and in vivo antitumor activity scaled linearly with the oligomeric state encoded by the receptor TMD, from monomers up to tetramers.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapy has transformed the treatment of B cell malignancies, improving patient survival and long-term remission. Nonetheless, over 50% of patients experience severe treatment-related toxicities including cytokine release syndrome (CRS) and neurotoxicity. Differences in severity of toxic side-effects among anti-CD19 CARs suggest that the choice of costimulatory domain makes a significant contribution to toxicity, but comparisons are complicated by additional differences in the hinge and transmembrane (TM) domains of the most commonly used CARs in the clinic, segments that have long been considered to perform purely structural roles.

View Article and Find Full Text PDF

Objectives: With the poorest 5-year survival of all cancers, improving treatment for pancreatic cancer is one of the biggest challenges in cancer research. We sought to explore the potential of combining both priming and activation of the immune system. To achieve this, we combined a CD40 agonist with interleukin-15 and tested its potential in pancreatic cancer.

View Article and Find Full Text PDF

Objectives: Adoptive transfer of chimeric antigen receptor (CAR)-modified T cells is a form of cancer immunotherapy that has achieved remarkable efficacy in patients with some haematological cancers. However, challenges remain in CAR T-cell treatment of solid tumours because of tumour-mediated immunosuppression.

Methods: We have demonstrated that CAR T-cell stimulation through T-cell receptors (TCRs) can generate durable responses against solid tumours in a variety of murine models.

View Article and Find Full Text PDF

Objectives: Investigation of variable response rates to cancer immunotherapies has exposed the immunosuppressive tumor microenvironment (TME) as a limiting factor of therapeutic efficacy. A determinant of TME composition is the tumor location, and clinical data have revealed associations between certain metastatic sites and reduced responses. Preclinical models to study tissue-specific TMEs have eliminated genetic heterogeneity, but have investigated models with limited clinical relevance.

View Article and Find Full Text PDF