Although aberrant activation of the KRAS and PI3K pathway alongside TP53 mutations account for frequent aberrations in human gastric cancers, neither the sequence nor the individual contributions of these mutations have been clarified. Here, we establish an allelic series of mice to afford conditional expression in the glandular epithelium of Kras;Pik3ca or Trp53 and/or ablation of Pten or Trp53. We find that Kras;Pik3ca is sufficient to induce adenomas and that lesions progress to carcinoma when also harboring Pten deletions.
View Article and Find Full Text PDFExcessive STAT3 signalling via gp130, the shared receptor subunit for IL-6 and IL-11, contributes to disease progression and poor survival outcomes in patients with colorectal cancer. Here, we provide evidence that bazedoxifene inhibits tumour growth via direct interaction with the gp130 receptor to suppress IL-6 and IL-11-mediated STAT3 signalling. Additionally, bazedoxifene combined with chemotherapy synergistically reduced cell proliferation and induced apoptosis in patient-derived colon cancer organoids.
View Article and Find Full Text PDFMacrophages represent a key component of the tumor microenvironment (TME) and are largely associated with poor prognosis. Therapeutic targeting of macrophages has historically focused on inhibiting their recruitment or reprogramming their phenotype from a protumor (M2-like) to an antitumor (M1-like) one. Unfortunately, this approach has not provided clinical breakthroughs that have changed practice.
View Article and Find Full Text PDFDeregulation of the Hippo pathway is a driver for cancer progression and treatment resistance. In the context of gastric cancer, YAP1 is a biomarker for poor patient prognosis. Although genomic tumor profiling provides information of Hippo pathway activation, the present study demonstrates that inhibition of Yap1 activity has anti-tumor effects in gastric tumors driven by oncogenic mutations and inflammatory cytokines.
View Article and Find Full Text PDFAlthough gastric cancer is a leading cause of cancer-related deaths, systemic treatment strategies remain scarce. Here, we report the pro-tumorigenic properties of the crosstalk between intestinal tuft cells and type 2 innate lymphoid cells (ILC2) that is evolutionarily optimized for epithelial remodeling in response to helminth infection. We demonstrate that tuft cell-derived interleukin 25 (IL25) drives ILC2 activation, inducing the release of IL13 and promoting epithelial tuft cell hyperplasia.
View Article and Find Full Text PDFBackground: We performed a retrospective analysis to determine the incidence of neurotrophic tropomyosin-receptor kinase ( fusion in non-small cell lung cancer (NSCLC).
Methods: Archival NSCLC tissues between 2018-2020 were screened by immunohistochemistry (IHC) with IHC-positive cases undergoing confirmatory molecular analysis. Correlative clinicopathologic parameters were collected.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of <10%. Aberrant activation or elevated expression of the tyrosine kinase c-SRC (SRC) is frequently observed in PDAC and is associated with a poor prognosis. Preclinical studies have revealed a multifaceted role for SRC activation in PDAC, including promoting chronic inflammation, tumor cell proliferation and survival, cancer cell stemness, desmoplasia, hypoxia, angiogenesis, invasion, metastasis, and drug resistance.
View Article and Find Full Text PDFTumor-derived organoids are valuable for testing anti-cancer drugs in vitro, but existing lysis-based protocols for viability measurement are laborious and restricted at a single time point. Here, we provide a lysis-free protocol for longitudinal and rapid assessment of mouse gastric tumor organoid viability and growth. We describe organoid plating, viability assessment via luminescence measurement, quantification of organoid growth by microscopy imaging, and treatment of organoids with test compounds to evaluate the effects on viability and growth at various time points.
View Article and Find Full Text PDFHere, we provide a protocol for an intrasplenic injection model to establish pancreatic tumors in the mouse liver. We describe the steps to inject tumor cells into mouse spleen and to perform a splenectomy, followed by animal recovery and end point analysis of tumors in the liver. This model allows rapid and reproducible tumor growth in a clinically relevant metastatic site, providing a platform to evaluate the efficacy of anti-cancer drugs.
View Article and Find Full Text PDFAberrant expression of the oncoprotein c-Myc (Myc) is frequently observed in solid tumors and is associated with reduced overall survival. In addition to well-recognized cancer cell-intrinsic roles of Myc, studies have also suggested tumor-promoting roles for Myc in cells of the tumor microenvironment, including macrophages and other myeloid cells. Here, we benchmark inactivation in tumor cells against the contribution of its expression in myeloid cells of murine hosts that harbor endogenous or allograft tumors.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a low 5-year survival rate and is associated with poor response to therapy. Elevated expression of the myeloid-specific hematopoietic cell kinase (HCK) is observed in PDAC and correlates with reduced patient survival. To determine whether aberrant HCK signaling in myeloid cells is involved in PDAC growth and metastasis, we established orthotopic and intrasplenic PDAC tumors in wild-type and HCK knockout mice.
View Article and Find Full Text PDFAlthough immunotherapy has revolutionized cancer treatment, many immunogenic tumors remain refractory to treatment. This can be largely attributed to an immunologically "cold" tumor microenvironment characterized by an accumulation of immunosuppressive myeloid cells and exclusion of activated T cells. Here, we demonstrate that genetic ablation or therapeutic inhibition of the myeloid-specific hematopoietic cell kinase (HCK) enables activity of antagonistic anti-programmed cell death protein 1 (anti-PD1), anti-CTLA4, or agonistic anti-CD40 immunotherapies in otherwise refractory tumors and augments response in treatment-susceptible tumors.
View Article and Find Full Text PDFNon-small cell lung cancer (NSCLC) is the most common type of lung cancer and accounts for 85% of lung cancer cases. Aberrant activation of the Signal Transducer and Activator of Transcription 3 (STAT3) is frequently observed in NSCLC and is associated with a poor prognosis. Pre-clinical studies have revealed an unequivocal role for tumor cell-intrinsic and extrinsic STAT3 signaling in NSCLC by promoting angiogenesis, cell survival, cancer cell stemness, drug resistance, and evasion of anti-tumor immunity.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of less than 10%. Macrophages are one of the earliest infiltrating cells in the pancreatic tumor microenvironment, and are associated with an increased risk of disease progression, recurrence, metastasis, and shorter overall survival. Pre-clinical studies have demonstrated an unequivocal role of macrophages in PDAC by contributing to chronic inflammation, cancer cell stemness, desmoplasia, immune suppression, angiogenesis, invasion, metastasis, and drug resistance.
View Article and Find Full Text PDFMalignant pleural mesothelioma (MPM) is an aggressive cancer with treatment limited to Cisplatin and Pemetrexed chemotherapy. Recently, we showed that drugs targeting the BCL-2-regulated apoptosis pathway could kill MPM cell lines in vitro, and control tumor growth in vivo. These studies showed BCL-XL was the dominant pro-survival BCL-2 family member correlating with its high-level expression in cells and patient tumor samples.
View Article and Find Full Text PDFDespite having one of the lowest survival rates of all cancers, there have been no new approved treatments for malignant pleural mesothelioma (MPM) in over a decade. Standard-of-care treatment relies on Cisplatin plus Pemetrexed chemotherapy. Here, we tested a suite of BH3-mimetic drugs targeting BCL-2 pro-survival proteins of the intrinsic apoptotic pathway.
View Article and Find Full Text PDFPersistent activation of the latent transcription factor STAT3 is observed in gastric tumor epithelial and immune cells and is associated with a poor patient prognosis. Although targeting STAT3-activating upstream kinases offers therapeutically viable targets with limited specificity, direct inhibition of STAT3 remains challenging. Here we provide functional evidence that myeloid-specific hematopoietic cell kinase (HCK) activity can drive STAT3-dependent epithelial tumor growth in mice and is associated with alternative macrophage activation alongside matrix remodeling and tumor cell invasion.
View Article and Find Full Text PDFGastrointestinal epithelial cells provide a selective barrier that segregates the host immune system from luminal microorganisms, thereby contributing directly to the regulation of homeostasis. We have shown that from early embryonic development Bcl-G, a Bcl-2 protein family member with unknown function, was highly expressed in gastrointestinal epithelial cells. While Bcl-G was dispensable for normal growth and development in mice, the loss of Bcl-G resulted in accelerated progression of colitis-associated cancer.
View Article and Find Full Text PDFThe contribution of mast cells in the microenvironment of solid malignancies remains controversial. Here we functionally assess the impact of tumor-adjacent, submucosal mast cell accumulation in murine and human intestinal-type gastric cancer. We find that genetic ablation or therapeutic inactivation of mast cells suppresses accumulation of tumor-associated macrophages, reduces tumor cell proliferation and angiogenesis, and diminishes tumor burden.
View Article and Find Full Text PDFExcessive signaling through gp130, the shared receptor for the interleukin (IL)6 family of cytokines, is a common hallmark in solid malignancies and promotes their progression. Here, we established the utility of a steroid analog clinically approved for the treatment of osteoporosis, to suppress gp130-dependent tumor growth of the gastrointestinal epithelium. administration reduced gastric tumor burden in mice, where tumors arise exclusively through excessive gp130/STAT3 signaling in response to the IL6 family cytokine IL11.
View Article and Find Full Text PDFMacrophages are a major component of the tumor microenvironment and orchestrate various aspects of immunity. Within tumors, macrophages can reversibly alter their endotype in response to environmental cues, including hypoxia and stimuli derived from other immune cells, as well as the extracellular matrix. Depending on their activation status, macrophages can exert dual influences on tumorigenesis by either antagonizing the cytotoxic activity immune cells or by enhancing antitumor responses.
View Article and Find Full Text PDF