Cyclic peptides (CPs) are a promising class of molecules for drug development, particularly as inhibitors of protein-protein interactions. Predicting low-energy structures and global structural ensembles of individual CPs is critical for the design of bioactive molecules, but these are challenging to predict and difficult to verify experimentally. In our previous work, we used explicit-solvent molecular dynamics simulations with enhanced sampling methods to predict the global structural ensembles of cyclic hexapeptides containing different permutations of glycine, alanine, and valine.
View Article and Find Full Text PDFCyclic peptides are a promising class of molecules for unique applications. Unfortunately, cyclic peptide design is severely limited by the difficulty in predicting the conformations they will adopt in solution. In this work, we use explicit-solvent molecular dynamics simulations to design well-structured cyclic peptides by studying their sequence-structure relationships.
View Article and Find Full Text PDFAutophagy is an essential pathway by which cellular and foreign material are degraded and recycled in eukaryotic cells. Induction of autophagy is a promising approach for treating diverse human diseases, including neurodegenerative disorders and infectious diseases. Here, we report the use of a diversity-oriented stapling approach to produce autophagy-inducing peptides that are intrinsically cell-penetrant.
View Article and Find Full Text PDF