Publications by authors named "Ashleigh E Baber"

Gold-based catalysts have received tremendous attention as supports and nanoparticles for heterogeneous catalysis, in part due to the ability of nanoscale Au to catalyze reactions at low temperatures in oxidative environments. Surface defects are known active sites for low temperature Au chemistry, so a full understanding of the interplay between intermolecular interactions and surface morphology is essential to an advanced understanding of catalytic behavior and efficiency. In a systematic study to better understand the adsorption and intermolecular behavior of small alcohols (C-C) on Au(111) defect sites, coverage studies of methanol, ethanol, 1-propanol, 1-butanol, 2-butanol, and isobutanol have been conducted on Au(111) using ultrahigh vacuum temperature programmed desorption (UHV-TPD).

View Article and Find Full Text PDF

The delicate balance between hydrogen bonding and van der Waals interactions determines the stability, structure, and chirality of many molecular and supramolecular aggregates weakly adsorbed on solid surfaces. Yet the inherent complexity of these systems makes their experimental study at the molecular level very challenging. In this quest, small alcohols adsorbed on metal surfaces have become a useful model system to gain fundamental insight into the interplay of such molecule-surface and molecule-molecule interactions.

View Article and Find Full Text PDF

Alkanethiolate monolayers are one of the most comprehensively studied self-assembled systems due to their ease of preparation, their ability to be functionalized, and the opportunity to control their thickness perpendicular to the surface. However, these systems suffer from degradation due to oxidation and defects caused by surface etching and adsorbate rotational boundaries. Thioethers offer a potential alternative to thiols that overcome some of these issues and allow dimensional control of self-assembly parallel to the surface.

View Article and Find Full Text PDF

The transformation of CO2 into alcohols or other hydrocarbon compounds is challenging because of the difficulties associated with the chemical activation of CO2 by heterogeneous catalysts. Pure metals and bimetallic systems used for this task usually have low catalytic activity. Here we present experimental and theoretical evidence for a completely different type of site for CO2 activation: a copper-ceria interface that is highly efficient for the synthesis of methanol.

View Article and Find Full Text PDF

Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding.

View Article and Find Full Text PDF

The oxidation of CO is the archetypal heterogeneous catalytic reaction and plays a central role in the advancement of fundamental studies, the control of automobile emissions, and industrial oxidation reactions. Copper-based catalysts were the first catalysts that were reported to enable the oxidation of CO at room temperature, but a lack of stability at the elevated reaction temperatures that are used in automobile catalytic converters, in particular the loss of the most reactive Cu(+) cations, leads to their deactivation. Using a combined experimental and theoretical approach, it is shown how the incorporation of titanium cations in a Cu2O film leads to the formation of a stable mixed-metal oxide with a Cu(+) terminated surface that is highly active for CO oxidation.

View Article and Find Full Text PDF

Active catalytic sites have traditionally been analyzed based on static representations of surface structures and characterization of materials before or after reactions. We show here by a combination of in situ microscopy and spectroscopy techniques that, in the presence of reactants, an oxide catalyst's chemical state and morphology are dynamically modified. The reduction of Cu2O films is studied under ambient pressures (AP) of CO.

View Article and Find Full Text PDF

Ceria based catalysts show remarkable activity for CO conversion reactions such as CO oxidation and the water-gas shift reaction. The identification of adsorption sites on the catalyst surfaces is essential to understand the reaction mechanisms of these reactions, but the complexity of heterogeneous powder catalysts and the propensity of ceria to easily change oxidation states in the presence of small concentrations of either oxidizing or reducing agents make the process difficult. In this study, the adsorption of CO on CuOx/Cu(111) and CeOx/Cu(111) systems has been studied using infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Formic acid (HCOOH) deprotonates on the open surfaces of Cu(110) and Cu(100) when exposed at 300 K. However, this does not occur on the close-packed surface of clean Cu(111). In this study, we show that the deprotonation of formic acid on atomically flat Cu(111) surfaces can be induced by pre-adsorbing polymeric formic acid clusters at low temperatures, and then annealing the system to break the acidic O-H bond of HCOOH adsorbed on the edges of the polymeric clusters.

View Article and Find Full Text PDF

Symmetry breaking by photons, electrons, and molecular interactions lies at the heart of many important problems as varied as the origin of homochiral life to enantioselective drug production. Herein we report a system in which symmetry breaking can be induced and measured in situ at the single-molecule level using scanning tunneling microscopy. We demonstrate that electrical excitation of a prochiral molecule on an achiral surface produces large enantiomeric excesses in the chiral adsorbed state of up to 39%.

View Article and Find Full Text PDF

Investigation of methanol's surface chemistry on metals is a crucial step towards understanding the reactivity of this important chemical feedstock. Cu is a relevant metal for methanol synthesis and reforming, but due to the weak interaction of methanol with Cu, an atomic scale view of methanol's coverage-dependent ordering and self-assembly on Cu(111), the most abundant facet of most nanoparticles, has not yet been possible. Low and variable temperature scanning tunneling microscopy coupled with density functional theory reveal a coverage-dependent range of highly ordered structures stabilized by two hydrogen bonds per molecule.

View Article and Find Full Text PDF

Facile dissociation of reactants and weak binding of intermediates are key requirements for efficient and selective catalysis. However, these two variables are intimately linked in a way that does not generally allow the optimization of both properties simultaneously. By using desorption measurements in combination with high-resolution scanning tunneling microscopy, we show that individual, isolated Pd atoms in a Cu surface substantially lower the energy barrier to both hydrogen uptake on and subsequent desorption from the Cu metal surface.

View Article and Find Full Text PDF

Using a combination of scanning tunneling microscopy (STM) and density functional theory the hydrogen bond directionality and associated chirality of enantiopure clusters is visualized and controlled. This is demonstrated with methanol hexamers adsorbed on Au(111), which depending on their chirality, adopt two distinct molecular footprints on the surface. Controlled STM tip manipulations were used to interconvert the chirality of entire clusters and to break up metastable chain structures into hexamers.

View Article and Find Full Text PDF

For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required. Significant progress has been made in the construction of molecular motors powered by light and by chemical reactions, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor.

View Article and Find Full Text PDF

Thioether molecular rotors show great promise as nanoscale models for exploring the fundamental limits of thermally and electrically driven molecular rotation. By using time-resolved measurements which increase the time resolution of the scanning tunneling microscope we were able to record the dynamics of individual thioether molecular rotors as a function of surface structure, rotor chemistry, thermal energy and electrical excitation. Our results demonstrate that the local surface structure can have a dramatic influence on the energy landscape that the molecular rotors experience.

View Article and Find Full Text PDF

It is generally accepted that important events on surfaces such as diffusion and reactions can be adsorption site dependent. However, due to their short lifetime and low concentration in most systems, adsorbates on nonequilibrium adsorption sites remain largely understudied. Using low-temperature scanning tunneling microscopy, site-dependent adsorption is shown for the molecule butyl methyl sulfide, which is trapped in multiple metastable adsorption sites upon deposition onto a Au(111) surface at 5 K.

View Article and Find Full Text PDF

Using a combination of low-temperature scanning tunneling microscopy and density functional theory it is demonstrated how the nature of an inert host metal of an alloy can affect the thermodynamics and kinetics of a reaction pathway in a much more profound way than simply a dilution, electronic, or geometric effect. This study reveals that individual, isolated Pd atoms can promote H2 dissociation and spillover onto a Cu(111) surface, but that the same mechanism is not observed for an identical array of Pd atoms in Au(111).

View Article and Find Full Text PDF

Pd/Au bimetallic alloys catalyze many important reactions ranging from the synthesis of vinyl acetate and hydrogen peroxide to the oxidation of carbon monoxide and trimerization of acetylene. It is known that the atomic-scale geometry of these alloys can dramatically affect both their reactivity and selectivity. However, there is a distinct lack of experimental characterization and quantification of ligand and ensemble effects in this system.

View Article and Find Full Text PDF

This paper describes a fundamental, single-molecule study of the motion of a set of thioethers supported on Au surfaces. Thioethers constitute a simple, robust system with which molecular rotation can be actuated both thermally and mechanically. Low-temperature scanning tunneling microscopy allowed the measurement of the rotation of individual molecules as a function of temperature and the quantification of both the energetic barrier and pre-exponential factor of the motion.

View Article and Find Full Text PDF

The literature contains many studies of thiol-based, self-assembled monolayers (RSH); however, thioethers (RSR) have barely begun to be explored, despite having the potential advantages of being more resistant to oxidation and allowing for the control of self-assembly parallel to the surface. This paper describes a low-temperature scanning tunneling microscopy investigation of dimethyl sulfide on Cu{111}. Previous work on the adsorption of dibutyl sulfide on Cu{111} revealed that intermolecular van der Waals interactions directed the parallel ordering of dibutyl sulfide molecules in linear rows.

View Article and Find Full Text PDF

This paper describes a low-temperature scanning tunneling microscopy (STM) study of a simple thioether, dibutyl sulfide, on a Cu{111} surface. The literature is full of data about thiol-based monolayers; however, relatively little is known about thioether self-assembly. Thioethers are more resilient to oxidation than thiols and offer the potential for control over nanoscale assembly in two dimensions parallel to the surface.

View Article and Find Full Text PDF

We describe how the presence of styrene, a weakly adsorbed molecule, dramatically restructures the Au{111} surface at temperatures as low as 80 K. The restructuring manifests itself both in mobility of step-edge atoms, as well as changes in the position of the herringbone reconstruction over time. These effects are explained in terms of the preferential adsorption sites of styrene allowing it to assist in atom detachment from step edges, as well as lowering of the energetic barrier for movement of the herringbone reconstruction.

View Article and Find Full Text PDF