Publications by authors named "Ashleigh D Smith McWilliams"

Research on hexagonal boron nitride (hBN) 2-dimensional nanostructures has gained traction due to their unique chemical, thermal, and electronic properties. However, to make use of these exceptional properties and fabricate macroscopic materials, hBN often needs to be exfoliated and dispersed in a solvent. In this review, we provide an overview of the many different methods that have been used for dispersing hBN.

View Article and Find Full Text PDF

Boron nitride nanotubes (BNNTs) have attracted attention for their predicted extraordinary properties; yet, challenges in synthesis and processing have stifled progress on macroscopic materials. Recent advances have led to the production of highly pure BNNTs. Here we report that neat BNNTs dissolve in chlorosulfonic acid (CSA) and form birefringent liquid crystal domains at concentrations above 170 ppmw.

View Article and Find Full Text PDF

We report the first real-time imaging of individualized boron nitride nanotubes (BNNTs) via stabilization with a rhodamine surfactant and fluorescence microscopy. We study the rotational and translational diffusion and find them to agree with predictions based on a confined, high-aspect-ratio rigid rod undergoing Brownian motion. We find that the behavior of BNNTs parallels that of individualized carbon nanotubes (CNTs), indicating that BNNTs could also be used as model rigid rods to study soft matter systems, while avoiding the experimental disadvantages of CNTs due to their strong light absorption.

View Article and Find Full Text PDF

The formation of oligomeric soluble aggregates is related to the toxicity of amyloid peptides and proteins. In this manuscript, we report the use of a ruthenium polypyridyl complex ([Ru(bpy)(dpqp)]) to track the formation of amyloid oligomers at different times using photoluminescence anisotropy. This technique is sensitive to the rotational correlation time of the molecule under study, which is consequently related to the size of the molecule.

View Article and Find Full Text PDF

The functionalization of nanomaterials has long been studied as a way to manipulate and tailor their properties to a desired application. Of the various methods available, the Billups-Birch reduction has become an important and widely used reaction for the functionalization of carbon nanotubes (CNTs) and, more recently, boron nitride nanotubes. However, an easily overlooked source of error when using highly reductive conditions is the utilization of poly(tetrafluoroethylene) (PTFE) stir bars.

View Article and Find Full Text PDF

Boron dipyrromethene (BODIPY) molecular rotors have shown sensitivity toward viscosity, polarity, and temperature. Here, we report a 1,3,5,7-tetramethyl-8-phenyl-BODIPY modified with a polyethylene glycol (PEG) chain, for temperature sensing and live cell imaging. This new PEG-BODIPY dye presents an increase in nonradiative decay as temperature increases, which directly influences its lifetime.

View Article and Find Full Text PDF

Boron nitride nanotubes (BNNTs) belong to a novel class of material with useful thermal, electronic and optical properties. However, the study and the development of applications of this material requires the formation of stable dispersions of individual BNNTs in water. Here we address the dispersion of BNNT material in water using surfactants with varying properties.

View Article and Find Full Text PDF