Publications by authors named "Ashkenasy N"

The quest to understand and mimic proton translocation mechanisms in natural channels has driven the development of peptide-based artificial channels facilitating efficient proton transport across nanometric membranes. It is demonstrated here that hierarchical peptide self-assembly can form micrometers-long proton nanochannels. The fourfold symmetrical peptide design leverages intermolecular aromatic interactions to align self-assembled cyclic peptide nanotubes, creating hydrophilic nanochannels between them.

View Article and Find Full Text PDF

The binding of peptides and proteins through multiple weak interactions is ubiquitous in nature. Biopanning has been used to "hijack" this multivalent binding for the functionalization of surfaces. For practical applications it is important to understand how multivalency influences the binding interactions and the resulting behaviour of the surface.

View Article and Find Full Text PDF

Bioinspired peptide assemblies are promising candidates for use as proton-conducting materials in electrochemical devices and other advanced technologies. Progress toward applications requires establishing foundational structure-function relationships for transport in these materials. This experimental-theoretical study sheds light on how the molecular structure and proton conduction are linked in three synthetic cyclic peptide nanotube assemblies that comprise the three canonical basic amino acids (lysine, arginine, and histidine).

View Article and Find Full Text PDF

Surface layer proteins perform multiple functions in prokaryotic cells, including cellular defense, cell-shape maintenance, and regulation of import and export of materials. However, mimicking the complex and dynamic behavior of such two-dimensional biochemical systems is challenging, and hence research has so far focused mainly on the design and manipulation of the structure and functionality of protein assemblies in solution. Motivated by the new opportunities that dynamic surface layer proteins may offer for modern technology, we herein demonstrate that immobilization of coiled coil proteins onto an inorganic surface facilitates complex behavior, manifested by reversible chemical reactions that can be rapidly monitored as digital surface readouts.

View Article and Find Full Text PDF

Melanin pigments have various properties that are of technological interest including photo- and radiation protection, rich coloration, and electronic functions. Nevertheless, laboratory-based synthesis of melanin and melanin-like materials with morphologies and chemical structures that are specifically optimized for these applications, is currently not possible. Here, melanin-like materials that are produced by enzymatic oxidation of a supramolecular tripeptide structures that are rich in tyrosine and have a 1D morphology are demonstrated, that are retained during the oxidation process while conducting tracks form through oxidative tyrosine crosslinking.

View Article and Find Full Text PDF

Low cost short wavelength infrared (SWIR) photovoltaic (PV) detectors and solar cells are of very great interest, yet the main production technology today is based on costly epitaxial growth of InGaAs layers. In this study, layers of p-type, quantum confined (QC) PbS nano-domains (NDs) structure that were engineered to absorb SWIR light at 1550 nm (Eg = 0.8 eV) were fabricated from solution using the chemical bath deposition (CBD) technique.

View Article and Find Full Text PDF

Design flexibility and modularity have emerged as powerful tools in the development of functional self-assembled peptide nanostructures. In particular, the tendency of peptides to form fibrils and nanotubes has motivated the investigation of electron and, more recently, proton transport in their fibrous films. In this study, we present a detailed characterization by impedance spectroscopy of films of self-assembled cyclic octa-d,l-α-peptide self-assembled nanotubes with amine side chains that promote proton transport.

View Article and Find Full Text PDF

Controlled modification of the semiconductor surface work function is of fundamental importance for improvements in the efficiency of (opto-)electronic devices. Binding amino acids to a semiconductor surface through their common carboxylic group offers a versatile tool for modulation of surface properties by the choice of their side chain. This approach is demonstrated here by tailoring the surface work function of indium tin oxide, one of the most abundant transparent electrodes in organic optoelectronic devices.

View Article and Find Full Text PDF

Noncovalent interactions are the main driving force in the folding of proteins into a 3D functional structure. Motivated by the wish to reveal the mechanisms of the associated self-assembly processes, scientists are focusing on studying self-assembly processes of short protein segments (peptides). While this research has led to major advances in the understanding of biological and pathological process, only in recent years has the applicative potential of the resulting self-assembled peptide assemblies started to be explored.

View Article and Find Full Text PDF

Charge transfer at the interface between the active layer and the contact is essential in any device. Transfer of electronic charges across the contact/active layer interface with metal contacts is well-understood. To this end, noble metals, such as gold or platinum, are widely used.

View Article and Find Full Text PDF

The use of non-canonical amino acids is a powerful way to control protein structure. Here, we show that subtle changes to backbone composition affect the ability of a dipeptide to modify solid surface electronic properties. The extreme sensitivity of the interactions to the peptide structure suggests potential applications in improving the performance of electronic devices.

View Article and Find Full Text PDF
Article Synopsis
  • Peptide fibril nanostructures show potential for use in future biotechnological and nanotechnological devices, with their effectiveness linked to well-defined architectures.
  • Fibrils with aromatic group substitutions enhance electron delocalization, leading to varying conductivity based on their self-assembly conditions.
  • The formation of specific polymorphs, governed by hydrogen bonding, electrostatic, and π-stacking interactions, allows for the optimization of conditions to achieve the polymorph with the best conductivity.
View Article and Find Full Text PDF

The advancement of diverse electrochemistry technologies depends on the development of novel proton conducting polymers. Inspired by the efficacy of proton transport through proteins, we show in this work that self-assembling peptide nanostructures may be a promising alternative for such organic proton conducting materials. We demonstrate that aromatic amino acids, which participate in charge transport in nature, unprecedentedly promote proton conduction under both high and low relative humidity conditions for d,l α-cyclic peptide nanotubes.

View Article and Find Full Text PDF

Protein binding to surfaces is an important phenomenon in biology and in modern technological applications. Extensive experimental and theoretical research has been focused in recent years on revealing the factors that govern binding affinity to surfaces. Theoretical studies mainly focus on examining the contribution of the individual amino acids or, alternatively, the binding potential energies of the full peptide, which are unable to capture entropic contributions and neglect the dynamic nature of the system.

View Article and Find Full Text PDF

Photosynthesis is Nature's major process for converting solar into chemical energy. One of the key players in this process is the multiprotein complex photosystem I (PSI) that through absorption of incident photons enables electron transfer, which makes this protein attractive for applications in bioinspired photoactive hybrid materials. However, the efficiency of PSI is still limited by its poor absorption in the green part of the solar spectrum.

View Article and Find Full Text PDF

Changes in ionic current flowing through nanopores due to binding or translocation of single biopolymer molecules enable their detection and characterization. It is, however, much more challenging to detect small molecules due to their rapid and small signal signature. Here we demonstrate the use of de novo designed peptides for functionalization of nanopores that enable the detection of a small analytes at the single molecule level.

View Article and Find Full Text PDF
Article Synopsis
  • Incorporating naphthalene diimide into short amphiphilic peptides leads to the creation of fibrils with strong intermolecular π-stacking interactions.
  • These interactions can be adjusted independently of the overall structure of the fibrils.
  • This research represents an initial advancement toward developing functional self-synthesizing materials.
View Article and Find Full Text PDF

Studies of charge transport through proteins bridged between two electrodes have been the subject of intense research in recent years. However, the complex structure of proteins makes it difficult to elucidate transport mechanisms, and the use of simple peptide oligomers may be an over simplified model of the proteins. To bridge this structural gap, we present here studies of charge transport through artificial parallel coiled-coil proteins conducted in dry environment.

View Article and Find Full Text PDF

The use of proteins and peptides as part of biosensors and electronic devices has been the focus of intense research in recent years. However, despite the fact that the interface between the bioorganic molecules and the inorganic matter plays a significant role in determining the properties of such devices, information on the electronic properties of such interfaces is sparse. In this work, we demonstrate that the identity and position of single amino acid in short inorganic binding protein-segments can significantly modulate the electronic properties of semiconductor surfaces on which they are bound.

View Article and Find Full Text PDF

An emerging new direction of research focuses on developing "self-synthesizing materials", those supramolecular structures that can promote their own formation by accelerating the synthesis of building blocks and/or an entire assembly. It was postulated recently that practical design of such systems can benefit from the ability to control the assembly of amphiphilic molecules into nanostructures. We describe here the self-assembly pathway of short amphiphilic peptides into various forms of soluble β-sheet structures--β-plates, fibrils, and hollow nanotubes--and their consequent activity as autocatalysts for the synthesis of monomeric peptides from simpler building blocks.

View Article and Find Full Text PDF

Most self-replicating peptide systems are made of α-helix forming sequences. However, it has been postulated that shorter and simpler peptides may also serve as templates for replication when arranged into well-defined structures. We describe here the design and characterization of new peptides that form soluble β-sheet aggregates that serve to significantly accelerate their ligation and self-replication.

View Article and Find Full Text PDF

The self-assembly propensity of peptides has been extensively utilized in recent years for the formation of supramolecular nanostructures. In particular, the self-assembly of peptides into fibrils and nanotubes makes them promising building blocks for electronic and electro-optic applications. However, the mechanisms of charge transfer in these wire-like structures, especially in ambient conditions, are not yet fully understood.

View Article and Find Full Text PDF

The fabrication of nanometric pores with controlled size is important for applications such as single molecule detection. We have recently suggested the use of focused electron beam induced etching (FEBIE) for the preparation of such nanopores in silicon nitride membranes. The use of a scanning probe microscope as the electron beam source makes this technique comparably accessible, opening the way to widespread fabrication of nanopores.

View Article and Find Full Text PDF

The utilization of field-effect transistor (FET) devices in biosensing applications have been extensively studied in recent years. Qualitative and quantitative understanding of the contribution of the organic layers constructed on the device gate, and the electrolyte media, on the behavior of the device is thus crucial. In this work we analyze the contribution of different organic layers on the pH sensitivity, threshold voltage, and gain of a silicon-on-insulator based FET device.

View Article and Find Full Text PDF

Conformational changes of proteins are widely used in nature for controlling cellular functions, including ligand binding, oligomerization, and catalysis. Despite the fact that different proteins and artificial peptides have been utilized as electron-transfer mediators in electronic devices, the unique propensity of proteins to switch between different conformations has not been used as a mechanism to control device properties and performance. Toward this aim, we have designed and prepared new dimeric coiled-coil proteins that adopt different conformations due to parallel or antiparallel relative orientations of their monomers.

View Article and Find Full Text PDF