Publications by authors named "Ashkan YekrangSafakar"

Rapid expansion of biopharmaceutical market calls for more efficient and reliable platforms to culture mammalian cells on a large scale. Stirred-tank bioreactors have been widely used for large-scale cell culture. However, it requires months of trials and errors to optimize culture conditions for each cell line.

View Article and Find Full Text PDF

Bioreactors for large-scale culture of mammalian cells are playing vital roles in biotechnology and bioengineering. Various bioreactors have been developed, but their capacity and efficiency are often limited by insufficient mass transfer rate and high shear stress. A rolled scaffold (RS) is a fully defined scaffold for high-density adherent culture of mammalian cells.

View Article and Find Full Text PDF

With recent advances in biotechnology, mammalian cells are used in biopharmaceutical industries to produce valuable protein therapeutics and investigated as effective therapeutic agents to permanently degenerative diseases in cell based therapy. In these exciting and actively expanding fields, a reliable, efficient, and affordable platform to culture mammalian cells on a large scale is one of the most vital necessities. To produce and maintain a very large population of anchorage-dependent cells, a microcarrier-based stirred tank bioreactor is commonly used.

View Article and Find Full Text PDF

Adherent cells produce cellular traction force (CTF) on a substrate to maintain their physical morphologies, sense external environment, and perform essential cellular functions. Precise characterization of the CTF can expand our knowledge of various cellular processes as well as lead to the development of novel mechanical biomarkers. However, current methods that measure CTF require special substrates and fluorescent microscopy, rendering them less suitable in a clinical setting.

View Article and Find Full Text PDF

Self-folding or micro-origami technologies are actively investigated as a novel manufacturing process to fabricate three-dimensional macro/micro-structures. In this paper, we present a simple process to produce a self-folding structure with a biaxially oriented polystyrene sheet (BOPS) or Shrinky Dinks. A BOPS sheet is known to shrink to one-third of its original size in plane, when it is heated above 160 °C.

View Article and Find Full Text PDF