Publications by authors named "Ashkan Abtahi"

Despite the outstanding electric properties and cost-effectiveness of poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives, their performance as hole transport layer (HTL) materials in conventional perovskite solar cells (PSCs) has lagged behind that of widely used spirobifluorene-based molecules or poly(triaryl amine). This gap is mainly from their poor solubility and energy alignment mismatch. In this work, the design and synthesis of a pyrrole-modified HTL (PPr) based on 3,4-propylenedioxythiophene (ProDOT) are presented for efficient and stable PSCs.

View Article and Find Full Text PDF

Transparent conductors (TCs) play a vital role in displays, solar cells, and emerging printed electronics. Here, we report a solution-processable n-doped organic conductor from copper-catalyzed cascade reactions in the air, which involves oxidative polymerization and reductive doping in one pot. The formed polymer ink is shelf-stable over 20 days and can endure storage temperatures from -20 to 65 °C.

View Article and Find Full Text PDF

Polyelectrolytes, a class of polymer with ionized functional groups in their repeating units, are widely used in various applications. Many ionized groups have been incorporated into polyelectrolytes, but aromatic anions are rarely investigated. Here, we first successfully incorporate a stable tetracyanocyclopentadienide (TCCp) aromatic anion into polynorbornene (PNb)-based electrolytes (PNb-TCCp) through ring-opening metathesis polymerization (ROMP) with controllable molecular weight and low polydispersity.

View Article and Find Full Text PDF

It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl or NOBF increase, and Hall effect measurements for the same p-doped polymers reveal that electrons become the dominant delocalized charge carriers.

View Article and Find Full Text PDF

Interfacial chemistry and energetics significantly impact the performance of photovoltaic devices. In the case of Pb-containing organic metal halide perovskites, photoelectron spectroscopy has been used to determine the energetic alignment of frontier electronic energy levels at various interfaces present in the photovoltaic device. For the Sn-containing analogues, which are less toxic, no such measurements have been made.

View Article and Find Full Text PDF

Organometal halide perovskite photovoltaics typically contain both electron and hole transport layers, both of which influence charge extraction and recombination. The ionization energy (IE) of the hole transport layer (HTL) is one important material property that will influence the open-circuit voltage, fill factor, and short-circuit current. Herein, we introduce a new series of triarylaminoethynylsilanes with adjustable IEs as efficient HTL materials for methylammonium lead iodide (MAPbI) perovskite based photovoltaics.

View Article and Find Full Text PDF

Hypothesis: In situ crosslinking is expected to increase the solvent stability of coatings formed by surface-initiated ring opening metathesis polymerization (SI ROMP). Solvent-associated degradation limits the utility of SI ROMP coatings. SI ROMP coatings have a unique capacity for post-functionalization through reaction of the unsaturated site on the polymer backbone.

View Article and Find Full Text PDF