Lithium-ion batteries (LIBs) have transformed modern electronics and rapidly advancing electric vehicles (EVs) due to their high energy and power densities, cycle-life, and acceptable safety. However, the comprehensive commercialization of EVs necessitates the invention of LIBs with much enhanced and stable electrochemical performances, including higher energy/power density, cycle-life, and operational safety, but at a lower cost. Herein, we report a simple method for improving the high-voltage (up to 4.
View Article and Find Full Text PDFWearable electronics are playing an important role in the health care industry. Wearable sensors are either directly attached to the body surface or embedded into worn garments. Textile-based batteries can help towards development of body conformal wearable sensors.
View Article and Find Full Text PDFSeparators play a crucial role in ensuring the safety of lithium-ion batteries (LIBs). Commercial polyolefin-based separators such as polyethylene (PE) still possess serious safety risks under abuse conditions because of their poor thermal stability. In this work, a novel type of binder-free, thin ceramic-coated separators with superior safety characteristics is demonstrated.
View Article and Find Full Text PDF