Phytochemicals-rich food-based botanicals including traditional or under-utilized plant-based ingredients can serve a dual functional role to help counter food contamination of bacterial origin, while also addressing the rise of diet-linked non-communicable chronic diseases (NCDs) such as type 2 diabetes, chronic hypertension and the associated oxidative stress. Hence the screening of these food-based botanicals for their phenolic content and profile, as well as antimicrobial, antioxidant, anti-hyperglycemic and anti-hypertensive properties has relevant merit. Using in vitro assay models, hot water extracts of different forms (slice, pickle, or powder) of amla (Phyllanthus emblica), clove (Syzygium aromaticum), kokum (Garcinia indica), and garlic (Allium sativum) were analyzed for their total soluble phenolic content (TSP) and phenolic profile as well as antimicrobial activity against strains of Salmonella Enteritidis, Listeria monocytogenes, and Escherichia coli that are associated with food-borne disease outbreaks.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
March 2022
Plant-based foods containing phenolic bioactives have human health protective functions relevant for combating diet and lifestyle-influenced chronic diseases, including type 2 diabetes (T2D). The molecular structural features of dietary phenolic bioactives allow antioxidant functions relevant for countering chronic oxidative stress-induced metabolic breakdown commonly associated with T2D. In addition to antioxidant properties, phenolic bioactives of diverse plant foods have therapeutic functional activities such as improving insulin sensitivity, reducing hepatic glucose output, inhibiting activity of key carbohydrate digestive enzymes, and modulating absorption of glucose in the bloodstream, thereby subsequently improving post-prandial glycemic control.
View Article and Find Full Text PDFFoodborne bacterial pathogens in consumed foods are major food safety concerns worldwide, leading to serious illness and even death. An exciting strategy is to use novel phenolic compounds against bacterial pathogens based on recruiting the inducible metabolic responses of plant endogenous protective defense against biotic and abiotic stresses. Such stress-inducible phenolic metabolites have high potential to reduce bacterial contamination, and particularly improve safety of plant foods.
View Article and Find Full Text PDFUnlabelled: Beneficial effects on overall gut health by phenolic bioactives-rich foods are potentially due to their modulation of probiotic gut bacteria and antimicrobial activity against pathogenic bacteria. Based on this rationale, the effect of the free and bound phenolic fractions from a Peruvian purple corn accession AREQ-084 on probiotic lactic acid bacteria such as Lactobacillus helveticus and Bifidobacterium longum and the gastric cancer-related pathogen Helicobacter pylori was evaluated. The free and bound phenolic composition was also determined by ultra-performance liquid chromatography.
View Article and Find Full Text PDF